FEP Protocol Builder: Optimization of Free Energy Perturbation Protocols using Active Learning

过度拟合 计算机科学 时间轴 协议(科学) 工作流程 机器学习 数学 数据库 人工神经网络 医学 统计 病理 替代医学
作者
César de Oliveira,Karl Leswing,Shulu Feng,R. P. F. Kanters,Robert Abel,Sathesh Bhat
标识
DOI:10.26434/chemrxiv-2023-vv5cq
摘要

Significant improvements have been made in the past decade to methods that rapidly and accurately predict binding affinity through free energy perturbation (FEP) calculations. This has been driven by recent advances in small molecule force fields and sampling algorithms combined with the availability of low-cost parallel computing. Predictive accuracies of ~1 kcal mol-1 have been regularly achieved, which are sufficient to drive potency optimization in modern drug discovery campaigns. Despite the robustness of these FEP approaches across multiple target classes, there are invariably target systems that do not display expected performance with default FEP settings. Traditionally, these systems required labor-intensive manual protocol development to arrive at parameter settings that produce a predictive FEP model. Due to the a) relatively large parameter space to be explored, b) significant compute requirements, and c) limited understanding of how combinations of parameters can affect FEP performance, manual FEP protocol optimization can take weeks to months to complete, and often does not involve rigorous train-test set splits, resulting in potential overfitting. These manual FEP protocol development timelines do not coincide with tight drug discovery project timelines, essentially preventing the use of FEP calculations for these target systems. Here, we describe an automated workflow termed FEP Protocol Builder (FEP-PB) to rapidly generate accurate FEP protocols for systems that do not perform well with default settings. FEP-PB uses active learning to iteratively search the protocol parameter space to develop accurate FEP protocols. To validate this approach, we applied it to pharmaceutically relevant systems where default FEP settings could not produce predictive models. We demonstrate that FEP-PB can rapidly generate accurate FEP protocols for the previously challenging MCL1 system with limited human intervention. We also apply FEP-PB in a real-world drug discovery setting to generate an accurate FEP protocol for the p97 system. FEP-PB is able to generate a more accurate protocol than the expert user, rapidly validating p97 as amenable to free energy calculations. Additionally, through the active learning process, we are able to gain insight into which parameters are most important for a given system. These results suggest that FEP-PB is a robust tool that can aid in rapidly developing accurate FEP protocols and increasing the number of targets that are amenable to the technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助朴实的南露采纳,获得10
刚刚
情怀应助xxaqs采纳,获得10
刚刚
李爱国应助nieziyun采纳,获得10
刚刚
领导范儿应助wuran采纳,获得10
刚刚
龙凌音完成签到,获得积分10
1秒前
1秒前
zhou完成签到,获得积分20
1秒前
2秒前
Raskye完成签到,获得积分10
2秒前
先生范发布了新的文献求助10
2秒前
MWSURE完成签到,获得积分10
2秒前
Ashley完成签到,获得积分10
2秒前
2秒前
LYSM发布了新的文献求助10
2秒前
大胆听莲完成签到 ,获得积分10
2秒前
FlipFlops发布了新的文献求助10
3秒前
烟花应助科研通管家采纳,获得20
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Lucas应助斯文的寒凝采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
懒骨头兄应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
EROS完成签到,获得积分10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
zzz完成签到,获得积分10
4秒前
田様应助科研通管家采纳,获得10
4秒前
顾瑶发布了新的文献求助10
4秒前
小鹿发布了新的文献求助10
4秒前
只争朝夕应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320