FEP Protocol Builder: Optimization of Free Energy Perturbation Protocols using Active Learning

过度拟合 计算机科学 时间轴 协议(科学) 工作流程 机器学习 数学 数据库 人工神经网络 医学 统计 病理 替代医学
作者
César de Oliveira,Karl Leswing,Shulu Feng,R. P. F. Kanters,Robert Abel,Sathesh Bhat
标识
DOI:10.26434/chemrxiv-2023-vv5cq
摘要

Significant improvements have been made in the past decade to methods that rapidly and accurately predict binding affinity through free energy perturbation (FEP) calculations. This has been driven by recent advances in small molecule force fields and sampling algorithms combined with the availability of low-cost parallel computing. Predictive accuracies of ~1 kcal mol-1 have been regularly achieved, which are sufficient to drive potency optimization in modern drug discovery campaigns. Despite the robustness of these FEP approaches across multiple target classes, there are invariably target systems that do not display expected performance with default FEP settings. Traditionally, these systems required labor-intensive manual protocol development to arrive at parameter settings that produce a predictive FEP model. Due to the a) relatively large parameter space to be explored, b) significant compute requirements, and c) limited understanding of how combinations of parameters can affect FEP performance, manual FEP protocol optimization can take weeks to months to complete, and often does not involve rigorous train-test set splits, resulting in potential overfitting. These manual FEP protocol development timelines do not coincide with tight drug discovery project timelines, essentially preventing the use of FEP calculations for these target systems. Here, we describe an automated workflow termed FEP Protocol Builder (FEP-PB) to rapidly generate accurate FEP protocols for systems that do not perform well with default settings. FEP-PB uses active learning to iteratively search the protocol parameter space to develop accurate FEP protocols. To validate this approach, we applied it to pharmaceutically relevant systems where default FEP settings could not produce predictive models. We demonstrate that FEP-PB can rapidly generate accurate FEP protocols for the previously challenging MCL1 system with limited human intervention. We also apply FEP-PB in a real-world drug discovery setting to generate an accurate FEP protocol for the p97 system. FEP-PB is able to generate a more accurate protocol than the expert user, rapidly validating p97 as amenable to free energy calculations. Additionally, through the active learning process, we are able to gain insight into which parameters are most important for a given system. These results suggest that FEP-PB is a robust tool that can aid in rapidly developing accurate FEP protocols and increasing the number of targets that are amenable to the technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清辞完成签到,获得积分10
刚刚
小赵很努力完成签到,获得积分10
刚刚
Jessie完成签到,获得积分10
刚刚
1秒前
匆匆流浪完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
CMCM完成签到,获得积分10
3秒前
可爱的函函应助滴滴滴采纳,获得10
4秒前
科研通AI2S应助新八采纳,获得10
5秒前
852应助111采纳,获得10
6秒前
李什么完成签到,获得积分10
6秒前
浮生发布了新的文献求助10
7秒前
7秒前
今后应助左丘冥采纳,获得10
7秒前
大模型应助贼拉瘦的美神采纳,获得10
8秒前
why发布了新的文献求助10
8秒前
能干的小刺猬完成签到,获得积分10
9秒前
我www完成签到,获得积分10
9秒前
yangxt-iga完成签到,获得积分10
9秒前
薰硝壤应助呜啦啦采纳,获得10
9秒前
慕青应助打工研狗采纳,获得10
9秒前
深情安青应助hearts_j采纳,获得20
10秒前
11秒前
大个应助仁爱发卡采纳,获得10
12秒前
12秒前
12秒前
科研通AI2S应助浮生采纳,获得10
13秒前
叶十七发布了新的文献求助30
13秒前
13秒前
13秒前
14秒前
喜气洋洋发布了新的文献求助10
14秒前
14秒前
15秒前
林一完成签到,获得积分10
15秒前
HX驳回了Honey应助
15秒前
商柒完成签到,获得积分10
15秒前
Adler应助一一一采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148786
求助须知:如何正确求助?哪些是违规求助? 2799787
关于积分的说明 7837076
捐赠科研通 2457292
什么是DOI,文献DOI怎么找? 1307821
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663