FEP Protocol Builder: Optimization of Free Energy Perturbation Protocols using Active Learning

过度拟合 计算机科学 时间轴 协议(科学) 工作流程 机器学习 数学 数据库 人工神经网络 医学 统计 病理 替代医学
作者
César de Oliveira,Karl Leswing,Shulu Feng,R. P. F. Kanters,Robert Abel,Sathesh Bhat
标识
DOI:10.26434/chemrxiv-2023-vv5cq
摘要

Significant improvements have been made in the past decade to methods that rapidly and accurately predict binding affinity through free energy perturbation (FEP) calculations. This has been driven by recent advances in small molecule force fields and sampling algorithms combined with the availability of low-cost parallel computing. Predictive accuracies of ~1 kcal mol-1 have been regularly achieved, which are sufficient to drive potency optimization in modern drug discovery campaigns. Despite the robustness of these FEP approaches across multiple target classes, there are invariably target systems that do not display expected performance with default FEP settings. Traditionally, these systems required labor-intensive manual protocol development to arrive at parameter settings that produce a predictive FEP model. Due to the a) relatively large parameter space to be explored, b) significant compute requirements, and c) limited understanding of how combinations of parameters can affect FEP performance, manual FEP protocol optimization can take weeks to months to complete, and often does not involve rigorous train-test set splits, resulting in potential overfitting. These manual FEP protocol development timelines do not coincide with tight drug discovery project timelines, essentially preventing the use of FEP calculations for these target systems. Here, we describe an automated workflow termed FEP Protocol Builder (FEP-PB) to rapidly generate accurate FEP protocols for systems that do not perform well with default settings. FEP-PB uses active learning to iteratively search the protocol parameter space to develop accurate FEP protocols. To validate this approach, we applied it to pharmaceutically relevant systems where default FEP settings could not produce predictive models. We demonstrate that FEP-PB can rapidly generate accurate FEP protocols for the previously challenging MCL1 system with limited human intervention. We also apply FEP-PB in a real-world drug discovery setting to generate an accurate FEP protocol for the p97 system. FEP-PB is able to generate a more accurate protocol than the expert user, rapidly validating p97 as amenable to free energy calculations. Additionally, through the active learning process, we are able to gain insight into which parameters are most important for a given system. These results suggest that FEP-PB is a robust tool that can aid in rapidly developing accurate FEP protocols and increasing the number of targets that are amenable to the technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
arn完成签到,获得积分20
刚刚
1秒前
5秒前
Livrik发布了新的文献求助10
5秒前
6秒前
过氧化氢应助77采纳,获得10
7秒前
8秒前
fiona发布了新的文献求助10
10秒前
happy发布了新的文献求助10
10秒前
沉默凡梦完成签到,获得积分10
11秒前
万严发布了新的文献求助10
12秒前
14秒前
li发布了新的文献求助10
16秒前
苏翰英完成签到,获得积分10
18秒前
happy完成签到,获得积分10
18秒前
20秒前
21秒前
苏翰英发布了新的文献求助10
21秒前
OYZKPQY发布了新的文献求助10
25秒前
快飞飞完成签到 ,获得积分10
25秒前
可爱的函函应助言言言言采纳,获得10
26秒前
26秒前
77完成签到,获得积分10
28秒前
大学发布了新的文献求助10
31秒前
34秒前
36秒前
37秒前
bbll完成签到,获得积分10
37秒前
小刘不怕困难完成签到,获得积分10
37秒前
紫罗兰花海完成签到 ,获得积分10
38秒前
鹿茸与共发布了新的文献求助10
40秒前
缥缈的寻琴应助sally采纳,获得10
41秒前
41秒前
金秋完成签到,获得积分0
42秒前
liqian发布了新的文献求助10
43秒前
小二郎应助lhnee采纳,获得10
43秒前
笑一笑发布了新的文献求助10
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999380
求助须知:如何正确求助?哪些是违规求助? 3538707
关于积分的说明 11275016
捐赠科研通 3277597
什么是DOI,文献DOI怎么找? 1807615
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810101