PANet: A Point-Attention Based Multi-Scale Feature Fusion Network for Point Cloud Registration

点云 稳健性(进化) 计算机科学 人工智能 特征(语言学) 保险丝(电气) 特征提取 比例(比率) 刚性变换 模式识别(心理学) 转化(遗传学) 计算机视觉 数据挖掘 工程类 电气工程 物理 基因 哲学 量子力学 生物化学 化学 语言学
作者
Yue Wu,Qianlin Yao,Xiaolong Fan,Maoguo Gong,Wenping Ma,Qiguang Miao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:51
标识
DOI:10.1109/tim.2023.3271757
摘要

Point cloud registration is a critical task in many 3D computer vision studies, aiming to find a rigid transformation that aligns one point cloud with another. In this paper, we propose PANet-a Point-Attention based multi-scale feature fusion network for partially overlapping point cloud registration. This study aims to investigate whether multi-scale features are more effective in improving the precision of alignment compared to fixed-scale local features. PANet comprises two core components: a multi-branch feature extraction module that extracts local features at different scales in parallel, and a Point-Attention Module that learns an appropriate weight for each branch and then fuse these multi-scale features by weighted combination to enhance the representation ability of features. At the end of the network, four hidden layers are used to obtain the rigid transformation from the source point cloud to the template point cloud. Experiments on the synthetic ModelNet40 dataset demonstrate that PANet outperforms state-of-the-art performance in terms of both alignment precision and robustness against noise. PANet also exhibits strong generalization ability on real-world Stanford 3D and ICL-NUIM datasets. In addition, the computational complexity of our model compared to previous works is also evaluated. The results and ablation studies demonstrate that multi-scale fused local features are better at improving registration accuracy than fixed-scale local features. The findings may inspire future research in related fields and contribute to the development of new ideas and approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
子昂加加油完成签到,获得积分10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
元谷雪应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
Lx发布了新的文献求助10
1秒前
承乐应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
乐空思应助科研通管家采纳,获得30
1秒前
元谷雪应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
元谷雪应助科研通管家采纳,获得10
1秒前
1秒前
核桃应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得15
2秒前
2秒前
2秒前
2秒前
2秒前
渴望者发布了新的文献求助10
3秒前
4秒前
FightingW发布了新的文献求助10
5秒前
在水一方应助阳光采纳,获得10
5秒前
小衫生发布了新的文献求助30
5秒前
DumPling完成签到 ,获得积分10
5秒前
XIAOJU_U完成签到 ,获得积分10
6秒前
陈星发布了新的文献求助10
6秒前
凡仔发布了新的文献求助10
6秒前
7秒前
llll发布了新的文献求助10
7秒前
9秒前
隐形曼青应助ri_290采纳,获得10
9秒前
9秒前
10秒前
11秒前
11秒前
孝顺的紫完成签到 ,获得积分10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781