Beamspace Joint Azimuth, Elevation, and Delay Estimation for Large-Scale MIMO-OFDM System

算法 计算机科学 方位角 多输入多输出 正交频分复用 计算复杂性理论 多径传播 离散傅里叶变换(通用) 频道(广播) 分数阶傅立叶变换 数学 傅里叶变换 电信 几何学 数学分析 傅里叶分析
作者
Ziqiang Wang,Lei Xie,Qun Wan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:3
标识
DOI:10.1109/tim.2023.3270972
摘要

Due to the capability to separate the line-of-sight signal from multipath signals in both time-space domains, the joint azimuth, elevation angle and time delay estimation technique is of great importance in the Internet of Things. However, as mainstream devices develop toward the large-scale multiple-input and multiple-output (MIMO) system, real-time processing gradually becomes computationally impractical for traditional element-space three-dimensional (3-D) joint angle and delay estimation (JADE) methods. In this paper, based on the measured channel state information acquired from a large-scale uniform rectangular array-orthogonal frequency division multiplexing (OFDM) system, a computationally efficient 3-D beamspace JADE algorithm is proposed. Firstly, we develop a method to select the beam that contains the line-of-sight path as the optimal beam. Then, for the parameter estimation, we transform the channel state information into the beamspace by utilizing the discrete Fourier transform sequence, and propose a modified 3-D beamspace matrix pencil (MP) algorithm only with the optimal beam and its adjacent beams, which contributes to conspicuous computational savings. Moreover, the estimation of delay, elevation and azimuth for the line-of-sight path are paired automatically with only one eigenvalue decomposition, and the multi-dimensional grid search is avoided. Experiment results demonstrate that the proposed approach could correctly select the optimal beam with high probability, and its parameter estimation accuracy is superior to the state-of-the-art JADE techniques while significantly reducing the computational complexity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁913完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
天才J发布了新的文献求助10
3秒前
4秒前
嘉辰发布了新的文献求助10
4秒前
Aoren完成签到,获得积分10
6秒前
7秒前
赘婿应助简单秋烟采纳,获得10
7秒前
那片天完成签到 ,获得积分10
7秒前
萌萌小粥完成签到 ,获得积分10
8秒前
高贵的麦片完成签到 ,获得积分10
8秒前
9秒前
上官若男应助muchenyu采纳,获得10
9秒前
嘿哟发布了新的文献求助10
10秒前
所所应助南小槿采纳,获得10
11秒前
痴情的碧关注了科研通微信公众号
11秒前
11秒前
LCFXR发布了新的文献求助10
12秒前
13秒前
无极微光应助昏睡的怀曼采纳,获得20
15秒前
大个应助天才J采纳,获得10
15秒前
15秒前
嘉辰完成签到,获得积分10
15秒前
852应助Gu采纳,获得10
16秒前
17秒前
打打应助Alice采纳,获得10
17秒前
17秒前
丘比特应助163采纳,获得10
18秒前
20秒前
Nancy发布了新的文献求助10
20秒前
21秒前
闪闪的诗珊应助DikL采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
666888完成签到 ,获得积分10
22秒前
天才J完成签到,获得积分10
22秒前
薛冰雪发布了新的文献求助10
22秒前
科研通AI6.1应助独特黎昕采纳,获得10
23秒前
24秒前
王木木完成签到,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778805
求助须知:如何正确求助?哪些是违规求助? 5643873
关于积分的说明 15450364
捐赠科研通 4910324
什么是DOI,文献DOI怎么找? 2642617
邀请新用户注册赠送积分活动 1590360
关于科研通互助平台的介绍 1544705