Review of Natural Language Processing in Pharmacology

计算机科学 领域(数学) 领域(数学分析) 人工智能 语句(逻辑) 过程(计算) 数据科学 信息抽取 自然语言处理 对抗制 语言学 数学分析 哲学 数学 纯数学 操作系统
作者
Dimitar Trajanov,Vangel Trajkovski,Makedonka Dimitrieva,Jovana Dobreva,Milos Jovanovik,Matej Klemen,Aleš Žagar,Marko Robnik‐Šikonja
出处
期刊:Pharmacological Reviews [American Society for Pharmacology & Experimental Therapeutics]
卷期号:75 (4): 714-738 被引量:6
标识
DOI:10.1124/pharmrev.122.000715
摘要

Natural language processing (NLP) is an area of artificial intelligence that applies information technologies to process the human language, understand it to a certain degree, and use it in various applications. This area has rapidly developed in the last few years and now employs modern variants of deep neural networks to extract relevant patterns from large text corpora. The main objective of this work is to survey the recent use of NLP in the field of pharmacology. As our work shows, NLP is a highly relevant information extraction and processing approach for pharmacology. It has been used extensively, from intelligent searches through thousands of medical documents to finding traces of adversarial drug interactions in social media. We split our coverage into five categories to survey modern NLP methodology, commonly addressed tasks, relevant textual data, knowledge bases, and useful programming libraries. We split each of the five categories into appropriate subcategories, describe their main properties and ideas, and summarize them in a tabular form. The resulting survey presents a comprehensive overview of the area, useful to practitioners and interested observers. Significance Statement The main objective of this work is to survey the recent use of NLP in the field of pharmacology, in order to provide a comprehensive overview of the current state in the area after the rapid developments which occurred in the last few years. We believe the resulting survey to be useful to practitioners and interested observers in the domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大旗完成签到,获得积分10
刚刚
1LDan完成签到,获得积分10
1秒前
1秒前
杨光发布了新的文献求助50
1秒前
辰月贰拾发布了新的文献求助30
2秒前
充电宝应助程风破浪采纳,获得10
2秒前
2秒前
3秒前
平常紫易完成签到,获得积分10
3秒前
zyf发布了新的文献求助10
3秒前
ericzhouxx应助LAN0528采纳,获得20
3秒前
小虾米完成签到,获得积分10
4秒前
开放的斌发布了新的文献求助30
5秒前
6秒前
毛豆应助xip采纳,获得10
7秒前
7秒前
大旗发布了新的文献求助10
7秒前
QXS驳回了CC应助
7秒前
8秒前
彭于晏应助平常紫易采纳,获得10
8秒前
hhh发布了新的文献求助10
9秒前
jufefit发布了新的文献求助10
10秒前
11秒前
赘婿应助重要的波吉采纳,获得10
11秒前
隐形曼青应助杨光采纳,获得10
11秒前
12秒前
12秒前
13秒前
shirelylee发布了新的文献求助20
13秒前
13秒前
Katiros完成签到,获得积分10
13秒前
踏实咖啡豆完成签到,获得积分10
14秒前
14秒前
土土土发布了新的文献求助10
16秒前
黎明发布了新的文献求助10
17秒前
jufefit完成签到,获得积分10
17秒前
淡定苗条完成签到,获得积分10
17秒前
17秒前
无花果应助Chen采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565922
求助须知:如何正确求助?哪些是违规求助? 3138683
关于积分的说明 9428454
捐赠科研通 2839408
什么是DOI,文献DOI怎么找? 1560695
邀请新用户注册赠送积分活动 729854
科研通“疑难数据库(出版商)”最低求助积分说明 717669