电催化剂
制氢
分解水
材料科学
析氧
掺杂剂
催化作用
无机化学
氢
电化学
电解
电解水
可逆氢电极
化学工程
兴奋剂
化学
电极
工作电极
物理化学
生物化学
光电子学
有机化学
光催化
工程类
电解质
作者
Thành Trần‐Phú,Manjunath Chatti,Josh Leverett,Thi Kim Anh Nguyen,Darcy Simondson,Dijon A. Hoogeveen,Alexander Kiy,The Duong,Bernt Johannessen,Jaydon Meilak,P. Kluth,Rose Amal,Alexandr N. Simonov,Rosalie K. Hocking,Rahman Daiyan,Antonio Tricoli
出处
期刊:Small
[Wiley]
日期:2023-03-18
卷期号:19 (25)
被引量:19
标识
DOI:10.1002/smll.202208074
摘要
Unlocking the potential of the hydrogen economy is dependent on achieving green hydrogen (H2 ) production at competitive costs. Engineering highly active and durable catalysts for both oxygen and hydrogen evolution reactions (OER and HER) from earth-abundant elements is key to decreasing costs of electrolysis, a carbon-free route for H2 production. Here, a scalable strategy to prepare doped cobalt oxide (Co3 O4 ) electrocatalysts with ultralow loading, disclosing the role of tungsten (W), molybdenum (Mo), and antimony (Sb) dopants in enhancing OER/HER activity in alkaline conditions, is reported. In situ Raman and X-ray absorption spectroscopies, and electrochemical measurements demonstrate that the dopants do not alter the reaction mechanisms but increase the bulk conductivity and density of redox active sites. As a result, the W-doped Co3 O4 electrode requires ≈390 and ≈560 mV overpotentials to reach ±10 and ±100 mA cm-2 for OER and HER, respectively, over long-term electrolysis. Furthermore, optimal Mo-doping leads to the highest OER and HER activities of 8524 and 634 A g-1 at overpotentials of 0.67 and 0.45 V, respectively. These novel insights provide directions for the effective engineering of Co3 O4 as a low-cost material for green hydrogen electrocatalysis at large scales.
科研通智能强力驱动
Strongly Powered by AbleSci AI