Two-Branch Deeper Graph Convolutional Network for Hyperspectral Image Classification

高光谱成像 平滑的 计算机科学 像素 模式识别(心理学) 图形 人工智能 残余物 水准点(测量) 卷积神经网络 算法 计算机视觉 理论计算机科学 大地测量学 地理
作者
Linzhou Yu,Jiangtao Peng,Na Chen,Weiwei Sun,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:21
标识
DOI:10.1109/tgrs.2023.3257369
摘要

Graph convolutional network (GCN) has recently attracted great attention in hyperspectral image (HSI) classification due to its strong ability to aggregate information of neighborhood nodes. However, a GCN model usually suffers from the over-smoothing problem (i.e., all nodes’ representations converge to a stationary point) when the number of GCN layers is increased. In addition, GCNs always work on superpixel-level nodes to reduce computational cost, so pixel-level features cannot be well captured. To deal with these problems, a novel two-branch deeper GCN (TBDGCN) is proposed to combine the advantages of superpixel-based GCN and pixel-based CNN, which can simultaneously extract superpixel-level and pixel-level features of HSIs. In the GCN branch, a GCN module with the DropEdge technique and residual connection is designed to alleviate over-smoothing and over-fitting problem, which results in a deeper network structure with more than ten layers. In the CNN branch, to capture spatial positional information and channel information, a mixed attention mechanism is constructed to extract attention-based spectral-spatial features. The features of the GCN and CNN branches are then fused for classification. Experimental results on three benchmark HSI data sets show that the classification performance of our TBDGCN is better than existing GCN models especially in the case of small sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素海亦发布了新的文献求助30
1秒前
Dina发布了新的文献求助10
2秒前
basepair完成签到,获得积分10
2秒前
NEO发布了新的文献求助10
3秒前
4秒前
hxq完成签到,获得积分10
5秒前
优美巧曼完成签到 ,获得积分10
8秒前
9秒前
cjcslhp2468完成签到,获得积分10
10秒前
感性的梦露完成签到,获得积分10
12秒前
13秒前
笨笨中心发布了新的文献求助10
14秒前
lijieyuan发布了新的文献求助10
14秒前
18秒前
云鹏完成签到,获得积分10
18秒前
追寻冰淇淋应助morgenlefay采纳,获得10
19秒前
8989完成签到,获得积分10
20秒前
lijieyuan完成签到,获得积分10
20秒前
20秒前
22秒前
23秒前
CipherSage应助洋洋采纳,获得10
24秒前
文静千凡发布了新的文献求助10
25秒前
25秒前
打打应助mmm采纳,获得10
28秒前
奋斗的绝悟完成签到 ,获得积分10
29秒前
30秒前
渣渣XM完成签到,获得积分10
31秒前
DamonFri完成签到,获得积分10
31秒前
要减肥安南完成签到,获得积分10
32秒前
UPUP0707完成签到,获得积分10
32秒前
jnfy发布了新的文献求助10
33秒前
33秒前
舒畅完成签到,获得积分10
35秒前
37秒前
37秒前
大真人发布了新的文献求助10
38秒前
科研通AI2S应助可爱的柜子采纳,获得10
38秒前
CodeCraft应助suansuan采纳,获得10
38秒前
健忘的沛蓝完成签到 ,获得积分10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309