TCMFP: a novel herbal formula prediction method based on network target’s score integrated with semi-supervised learning genetic algorithms

机器学习 相似性(几何) 人工智能 计算机科学 草药 医学 草本植物 传统医学 图像(数学)
作者
Qikai Niu,Hongtao Li,Lin Tong,Sihong Liu,Wenjing Zong,Siqi Zhang,SiWei Tian,Jing’ai Wang,Jun Liu,Bing Li,Zhong Wang,Huamin Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:21
标识
DOI:10.1093/bib/bbad102
摘要

Abstract Traditional Chinese medicine (TCM) has accumulated thousands years of knowledge in herbal therapy, but the use of herbal formulas is still characterized by reliance on personal experience. Due to the complex mechanism of herbal actions, it is challenging to discover effective herbal formulas for diseases by integrating the traditional experiences and modern pharmacological mechanisms of multi-target interactions. In this study, we propose a herbal formula prediction approach (TCMFP) combined therapy experience of TCM, artificial intelligence and network science algorithms to screen optimal herbal formula for diseases efficiently, which integrates a herb score (Hscore) based on the importance of network targets, a pair score (Pscore) based on empirical learning and herbal formula predictive score (FmapScore) based on intelligent optimization and genetic algorithm. The validity of Hscore, Pscore and FmapScore was verified by functional similarity and network topological evaluation. Moreover, TCMFP was used successfully to generate herbal formulae for three diseases, i.e. the Alzheimer’s disease, asthma and atherosclerosis. Functional enrichment and network analysis indicates the efficacy of targets for the predicted optimal herbal formula. The proposed TCMFP may provides a new strategy for the optimization of herbal formula, TCM herbs therapy and drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯真保温杯完成签到 ,获得积分10
8秒前
BowieHuang应助苗笑卉采纳,获得10
9秒前
小谭完成签到 ,获得积分10
11秒前
Orange应助tcheng采纳,获得10
17秒前
苗笑卉完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
28秒前
Xzx1995完成签到 ,获得积分10
32秒前
风雨霖霖完成签到 ,获得积分10
41秒前
47秒前
tcheng发布了新的文献求助10
54秒前
lht完成签到 ,获得积分10
56秒前
black_cavalry完成签到,获得积分10
56秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
shhoing应助科研通管家采纳,获得10
58秒前
阳光醉山完成签到 ,获得积分10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ranj完成签到,获得积分10
1分钟前
蔚欢完成签到 ,获得积分10
1分钟前
gmc完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
寄书长不达完成签到 ,获得积分10
1分钟前
失眠的笑翠完成签到 ,获得积分10
1分钟前
CY完成签到,获得积分10
1分钟前
77完成签到,获得积分10
1分钟前
开胃咖喱完成签到,获得积分10
2分钟前
changfox完成签到,获得积分10
2分钟前
gincle完成签到 ,获得积分10
2分钟前
高高的从波完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
guoguo1119完成签到 ,获得积分10
2分钟前
hyman1218完成签到 ,获得积分10
2分钟前
白薇完成签到 ,获得积分10
2分钟前
2分钟前
nano完成签到 ,获得积分10
2分钟前
isedu完成签到,获得积分0
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539114
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566744
什么是DOI,文献DOI怎么找? 2503536
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1453020