Hybrid Attention-Based U-Shaped Network for Remote Sensing Image Super-Resolution

计算机科学 遥感 背景(考古学) 特征(语言学) 代表(政治) 卷积(计算机科学) 卷积神经网络 图像分辨率 比例(比率) 特征提取 人工智能 人工神经网络 地质学 古生物学 哲学 语言学 物理 量子力学 政治 政治学 法学
作者
Jiarui Wang,Binglu Wang,Xiaoxu Wang,Yongqiang Zhao,Teng Long
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:18
标识
DOI:10.1109/tgrs.2023.3283769
摘要

Recently, remote sensing image super-resolution (RSISR) has drawn considerable attention and made great breakthroughs based on convolutional neural networks (CNNs). Due to the scale and richness of texture and structural information frequently recurring inside the same remote sensing images (RSIs) but varying greatly with different RSIs, state-of-the-art CNN-based methods have begun to explore the multiscale global features in RSIs by using attention mechanisms. However, they are still insufficient to explore significant content attention clues in RSIs. In this article, we present a new hybrid attention-based U-shaped network (HAUNet) for RSISR to effectively explore the multiscale features and enhance the global feature representation by hybrid convolution-based attention. It contains two kinds of convolutional attention-based single-scale feature extraction modules (SEM) to explore the global spatial context information and abstract content information, and a cross-scale interaction module (CIM) as the skip connection between different scale feature outputs of encoders to bridge the semantic and resolution gaps between them. Considering the existence of equipment with poor hardware facilities, we further design a lighter HAUNet-S with about 596K parameters. Experimental attribution analysis method LAM results demonstrate that our HAUNet is a more efficient way to capture meaningful content information and quantitative results can show that our HAUNet can significantly improve the performance of RSISR on four remote sensing test datasets. Meanwhile, HAUNET-S also maintains competitive performance. Our code is available at https://github.com/likakakaka/HAUNet_RSISR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Asteroid发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
ding应助lt采纳,获得10
2秒前
大气的半双完成签到,获得积分10
2秒前
珺倪倪发布了新的文献求助10
3秒前
淡然天问发布了新的文献求助10
5秒前
所所应助傻傻的水杯采纳,获得10
6秒前
上官若男应助harden采纳,获得10
6秒前
福福气发布了新的文献求助10
7秒前
8秒前
辣辣发布了新的文献求助10
8秒前
科研通AI6应助黑土采纳,获得10
8秒前
9秒前
称心的自行车完成签到,获得积分10
10秒前
王志霞发布了新的文献求助10
10秒前
11秒前
Lu完成签到,获得积分10
11秒前
Shirley完成签到,获得积分10
11秒前
11秒前
香果完成签到,获得积分10
12秒前
淡然天问完成签到,获得积分10
12秒前
潘道士完成签到 ,获得积分10
13秒前
13秒前
慕青应助咚巴拉采纳,获得10
13秒前
已己发布了新的文献求助10
14秒前
口岸是你完成签到,获得积分10
14秒前
MNing完成签到,获得积分20
14秒前
爱听歌的悒完成签到,获得积分10
14秒前
满意元枫完成签到,获得积分10
14秒前
14秒前
危机的蜜蜂完成签到,获得积分10
15秒前
15秒前
爱丸完成签到,获得积分10
15秒前
背后思卉应助GSR采纳,获得10
15秒前
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588912
求助须知:如何正确求助?哪些是违规求助? 4671732
关于积分的说明 14789236
捐赠科研通 4626741
什么是DOI,文献DOI怎么找? 2532004
邀请新用户注册赠送积分活动 1500577
关于科研通互助平台的介绍 1468354