SAR ship localization method with denoising and feature refinement

计算机科学 特征(语言学) 散斑噪声 降噪 人工智能 合成孔径雷达 噪音(视频) 职位(财务) 模式识别(心理学) 计算机视觉 斑点图案 图像(数学) 哲学 语言学 财务 经济
作者
Cheng Zha,Weidong Min,Qing Han,Wei Li,Xin Xiong,Qi Wang,Meng Zhu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106444-106444 被引量:5
标识
DOI:10.1016/j.engappai.2023.106444
摘要

Synthetic Aperture Radar (SAR) ship detection is greatly important to marine transportation monitoring and fishery resource management. To improve the detection accuracy of small ships, an SAR ship localization method with Denoising and Feature Refinement (DFR) is proposed in this paper. It consists of three parts. The first part is the denoising module, which uses non-local mean to suppress the speckle noise of the SAR image. The second part is Hierarchical Feature Fusion (HFF) module. It can integrate more low-level features by adding skip connections. This prevents the low-level spatial position information of the fused features from being diluted by high-level semantic information, therefore it is beneficial to the detection of small ships. The third part is a center-based ship predictor with Feature Refinement (FR). The FR module is proposed to refine the features and reduce the background interference, which is conducive to locate ships more accurately. Extensive experiments are conducted. The experimental results show that after adding the denoising and FR modules, the value of AP0.5 is increased by 1.7% and 2.3%, respectively, which proves the effectiveness of these two modules. In inshore and offshore scenarios, the AP0.5 values of DFR are 0.884 and 0.966, respectively, achieving the best results. The proposed method can also be generalized to mark lesion locations in medical images and detect offshore oil production platforms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ohhruby发布了新的文献求助10
2秒前
4秒前
jzk2025发布了新的文献求助10
4秒前
4秒前
香蕉梨愁完成签到,获得积分10
5秒前
5秒前
5秒前
Shandongdaxiu完成签到 ,获得积分10
6秒前
难过大白完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
iiiorange发布了新的文献求助10
6秒前
7秒前
飘逸的钢铁侠完成签到,获得积分10
7秒前
zzc关注了科研通微信公众号
7秒前
勤恳锅包肉完成签到,获得积分10
7秒前
8秒前
qcwindchasing完成签到,获得积分10
8秒前
9秒前
CodeCraft应助zwq采纳,获得10
9秒前
9秒前
难过大白发布了新的文献求助10
10秒前
xxxx完成签到 ,获得积分10
10秒前
10秒前
magiczhu完成签到,获得积分10
11秒前
ccy发布了新的文献求助10
11秒前
12秒前
科研打工人完成签到,获得积分10
12秒前
万重山完成签到,获得积分10
13秒前
up325发布了新的文献求助10
13秒前
小木虫完成签到,获得积分10
14秒前
孔懿轩发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
abcd发布了新的文献求助10
18秒前
上官若男应助changyongcheng采纳,获得30
19秒前
Eutopia完成签到 ,获得积分20
20秒前
zz完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778469
求助须知:如何正确求助?哪些是违规求助? 5641573
关于积分的说明 15449483
捐赠科研通 4910143
什么是DOI,文献DOI怎么找? 2642399
邀请新用户注册赠送积分活动 1590239
关于科研通互助平台的介绍 1544574