赖氨酰氧化酶
虚拟筛选
重新调整用途
可药性
乳腺癌
药物重新定位
化学
癌症研究
IC50型
体外
药物发现
癌症
药理学
药品
医学
生物化学
生物
酶
内科学
基因
生态学
标识
DOI:10.1080/07391102.2023.2224894
摘要
Lysyl oxidase like-2 (LOXL2) belongs to copper dependent amine oxidase from the lysyl oxidase family and is associated with breast cancer metastasis This study used multi-stage computational screening and in vitro validations to repurpose FDA approved drugs targeting LOXL2 to control breast cancer progression.Molecular modeling techniques and high-throughput virtual-screening technique was employed to screen FDA-approved drug library for its avid binding to LOXL2.hLOXL2, MDA-MB231 and MCF 7 cells were used for in vitro.Collectively, this repurposing study identified levoleucovorin to bind the active site of LOXL2 protein to inhibit its activity. Further validation of levoleucovorin against LOXL2 activity is warranted toward repurposing levoleucovorin as a therapeutic agent for treating breast cancer patients. validations.Computational modeling of LOXL2 identified putative druggable region at the active site of LOXL2 protein. High-throughput virtual screening predicted levoleucovorin as a best lead drug candidate to have a favorable binding affinity for LOXL2 at its active site. Molecular dynamic simulation predicts levoleucovorin to bind stably and avidly to LOXL2 with favorable interactions. In vitro validations show levoleucovorin significantly inhibited hLOXL2 with and IC50 value of 68.81 μM. Levoleucovorin controlled cell proliferations in MDM-MB 231 and MCF-7 cells with GI50 values of 55.91 μM and 79.20 μM respectively. Further, a dose dependent inhibition of cancer cell migration was noted along with apoptosis induction in these cells with levoleucovorin treatment.Communicated by Ramaswamy H. Sarma
科研通智能强力驱动
Strongly Powered by AbleSci AI