Comparative study on the performance of different machine learning techniques to predict the shear strength of RC deep beams: Model selection and industry implications

计算机科学 人工智能 机器学习 人工神经网络 克里金 支持向量机 随机性 高斯过程 Boosting(机器学习) 决策树 数据挖掘 高斯分布 数学 统计 量子力学 物理
作者
Khuong Le-Nguyen,Hoa T. Trinh,Thanh Trung Nguyên,Hoàng Long Nguyễn
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:230: 120649-120649
标识
DOI:10.1016/j.eswa.2023.120649
摘要

This study presents a comprehensive and rigorous process to develop the most appropriate machine learning (ML) model for predicting the shear strength of RC deep beams (RCDBs). The process consists of the crucial stages and state-of-the-art techniques of ML, including the development of ML models, selection of input features using Shapley Additive explanations, optimisation of the training process, assessment of data randomness, comparisons to the conventional practice codes, and development of novel web-based design platform based on the proposed ML model. For this purpose, seven machine learning models, i.e., linear regression, artificial neural networks (ANN), support vector machines, decision trees, ensemble of trees (EoT), extreme gradient boosting (XGBoost), and Gaussian process regression (GPR) were developed to predict the shear strength of RC deep beams based on a database of 518 samples with 15 input features. The four best models (i.e., ANN, EoT, XGBoost, and GPR) were then considered to assess the influence of varying the number of input features on the prediction performance. The results proved that GPR is the most reliable and accurate ML model. In addition, a set of nine optimal input features is proposed for predicting the shear strength of RCDBs. It was observed that randomly dividing the dataset into training and testing sets can significantly impact the predicted results. In some cases, the R2 value dropped to under 0.78, highlighting the importance of carefully considering the methodology for dividing the dataset when conducting machine learning experiments. The shear strength predicted by ML models was then compared with the three most prominent practice codes (i.e., ACI318, EC2, CSA 23.3-04), which indicated ML approach is highly reliable and accurate over conventional methods. In addition, the study used the Monte Carlo method to evaluate the robustness of the machine learning models and developed a user-interface platform to facilitate the practical application of the proposed machine learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助yuyu采纳,获得10
刚刚
蔡翌文完成签到 ,获得积分10
刚刚
crescendo完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
plumcute完成签到,获得积分10
1秒前
cybbbbbb发布了新的文献求助10
2秒前
名丿完成签到,获得积分10
2秒前
2秒前
网上飞完成签到,获得积分10
2秒前
小香草发布了新的文献求助10
2秒前
xiaoziyi666发布了新的文献求助10
3秒前
3秒前
桃子发布了新的文献求助10
4秒前
正在输入中应助eee采纳,获得20
4秒前
屁王发布了新的文献求助10
4秒前
wwwww发布了新的文献求助10
4秒前
5秒前
QLLW完成签到,获得积分10
5秒前
5秒前
风评完成签到,获得积分10
5秒前
MADKAI发布了新的文献求助10
5秒前
Zhong发布了新的文献求助10
6秒前
wwwstt完成签到,获得积分20
6秒前
卢浩完成签到,获得积分10
6秒前
7秒前
8秒前
wwwstt发布了新的文献求助10
8秒前
妮妮完成签到,获得积分10
8秒前
钟是一梦发布了新的文献求助10
8秒前
共享精神应助芒竹采纳,获得10
8秒前
hu970发布了新的文献求助10
9秒前
桃子完成签到,获得积分10
9秒前
科研通AI2S应助清圆527采纳,获得10
10秒前
打打应助勿庸采纳,获得10
10秒前
南佳发布了新的文献求助10
10秒前
11秒前
wbh完成签到,获得积分10
11秒前
咕咕咕发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740