Comparative study on the performance of different machine learning techniques to predict the shear strength of RC deep beams: Model selection and industry implications

计算机科学 人工智能 机器学习 人工神经网络 克里金 支持向量机 随机性 高斯过程 Boosting(机器学习) 决策树 数据挖掘 高斯分布 数学 统计 量子力学 物理
作者
Khuong Le-Nguyen,Hoa T. Trinh,Thanh Trung Nguyên,Hoàng Long Nguyễn
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:230: 120649-120649
标识
DOI:10.1016/j.eswa.2023.120649
摘要

This study presents a comprehensive and rigorous process to develop the most appropriate machine learning (ML) model for predicting the shear strength of RC deep beams (RCDBs). The process consists of the crucial stages and state-of-the-art techniques of ML, including the development of ML models, selection of input features using Shapley Additive explanations, optimisation of the training process, assessment of data randomness, comparisons to the conventional practice codes, and development of novel web-based design platform based on the proposed ML model. For this purpose, seven machine learning models, i.e., linear regression, artificial neural networks (ANN), support vector machines, decision trees, ensemble of trees (EoT), extreme gradient boosting (XGBoost), and Gaussian process regression (GPR) were developed to predict the shear strength of RC deep beams based on a database of 518 samples with 15 input features. The four best models (i.e., ANN, EoT, XGBoost, and GPR) were then considered to assess the influence of varying the number of input features on the prediction performance. The results proved that GPR is the most reliable and accurate ML model. In addition, a set of nine optimal input features is proposed for predicting the shear strength of RCDBs. It was observed that randomly dividing the dataset into training and testing sets can significantly impact the predicted results. In some cases, the R2 value dropped to under 0.78, highlighting the importance of carefully considering the methodology for dividing the dataset when conducting machine learning experiments. The shear strength predicted by ML models was then compared with the three most prominent practice codes (i.e., ACI318, EC2, CSA 23.3-04), which indicated ML approach is highly reliable and accurate over conventional methods. In addition, the study used the Monte Carlo method to evaluate the robustness of the machine learning models and developed a user-interface platform to facilitate the practical application of the proposed machine learning model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
apk866完成签到 ,获得积分10
1秒前
xurui_s完成签到 ,获得积分10
1秒前
蒹葭发布了新的文献求助10
3秒前
3秒前
不安红豆发布了新的文献求助10
3秒前
4秒前
巨鱼完成签到,获得积分20
4秒前
小薇丸子完成签到,获得积分10
5秒前
jessie完成签到,获得积分10
7秒前
9秒前
星河万里发布了新的文献求助10
10秒前
niekyang完成签到 ,获得积分10
10秒前
somous完成签到,获得积分10
10秒前
10秒前
qinjiehm完成签到,获得积分10
13秒前
爱吃西瓜完成签到,获得积分10
13秒前
13秒前
yolo完成签到,获得积分10
13秒前
子期完成签到 ,获得积分10
14秒前
mw发布了新的文献求助10
14秒前
jstagey完成签到,获得积分10
14秒前
FashionBoy应助somous采纳,获得10
14秒前
彩色枫发布了新的文献求助10
14秒前
蒹葭完成签到,获得积分10
17秒前
王青文完成签到,获得积分10
17秒前
LHS驳回了爆米花应助
18秒前
19秒前
20秒前
mw完成签到,获得积分10
22秒前
23秒前
xiaotianli完成签到,获得积分10
24秒前
25秒前
爱吃西瓜发布了新的文献求助10
26秒前
追寻的问玉完成签到 ,获得积分10
26秒前
光亮水蓝关注了科研通微信公众号
27秒前
27秒前
SHARK完成签到,获得积分20
29秒前
orixero应助fvsuar采纳,获得10
30秒前
禛禛发布了新的文献求助10
32秒前
最佳发布了新的文献求助20
32秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071