Comparative study on the performance of different machine learning techniques to predict the shear strength of RC deep beams: Model selection and industry implications

计算机科学 人工智能 机器学习 人工神经网络 克里金 支持向量机 随机性 高斯过程 Boosting(机器学习) 决策树 数据挖掘 高斯分布 数学 统计 量子力学 物理
作者
Khuong Le-Nguyen,Hoa T. Trinh,Thanh Trung Nguyên,Hoàng Long Nguyễn
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:230: 120649-120649
标识
DOI:10.1016/j.eswa.2023.120649
摘要

This study presents a comprehensive and rigorous process to develop the most appropriate machine learning (ML) model for predicting the shear strength of RC deep beams (RCDBs). The process consists of the crucial stages and state-of-the-art techniques of ML, including the development of ML models, selection of input features using Shapley Additive explanations, optimisation of the training process, assessment of data randomness, comparisons to the conventional practice codes, and development of novel web-based design platform based on the proposed ML model. For this purpose, seven machine learning models, i.e., linear regression, artificial neural networks (ANN), support vector machines, decision trees, ensemble of trees (EoT), extreme gradient boosting (XGBoost), and Gaussian process regression (GPR) were developed to predict the shear strength of RC deep beams based on a database of 518 samples with 15 input features. The four best models (i.e., ANN, EoT, XGBoost, and GPR) were then considered to assess the influence of varying the number of input features on the prediction performance. The results proved that GPR is the most reliable and accurate ML model. In addition, a set of nine optimal input features is proposed for predicting the shear strength of RCDBs. It was observed that randomly dividing the dataset into training and testing sets can significantly impact the predicted results. In some cases, the R2 value dropped to under 0.78, highlighting the importance of carefully considering the methodology for dividing the dataset when conducting machine learning experiments. The shear strength predicted by ML models was then compared with the three most prominent practice codes (i.e., ACI318, EC2, CSA 23.3-04), which indicated ML approach is highly reliable and accurate over conventional methods. In addition, the study used the Monte Carlo method to evaluate the robustness of the machine learning models and developed a user-interface platform to facilitate the practical application of the proposed machine learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MMTI完成签到,获得积分10
刚刚
麕麕完成签到 ,获得积分10
刚刚
1秒前
1秒前
yes完成签到,获得积分10
1秒前
三金完成签到,获得积分10
2秒前
2秒前
赖林完成签到,获得积分10
2秒前
blue应助ardejiang采纳,获得20
3秒前
走之儿完成签到,获得积分10
5秒前
大椒完成签到 ,获得积分10
6秒前
6秒前
pjm完成签到,获得积分20
6秒前
7秒前
张书源完成签到 ,获得积分10
7秒前
鎏祈完成签到 ,获得积分10
7秒前
烟花应助大白采纳,获得10
9秒前
Dejavue发布了新的文献求助10
11秒前
catch完成签到,获得积分10
11秒前
Zhai发布了新的文献求助10
12秒前
14秒前
这次会赢吗完成签到,获得积分10
14秒前
kirto完成签到,获得积分10
16秒前
an完成签到,获得积分10
16秒前
踏实十八发布了新的文献求助10
16秒前
刘梓应助眼睛大天思采纳,获得20
16秒前
努力加油煤老八完成签到 ,获得积分0
16秒前
刘佳完成签到 ,获得积分10
18秒前
sinlar发布了新的文献求助10
18秒前
Dejavue完成签到,获得积分10
19秒前
19秒前
SciGPT应助七七采纳,获得10
21秒前
张六六发布了新的文献求助10
21秒前
YXYYXY完成签到,获得积分10
22秒前
JamesPei应助赵一采纳,获得10
23秒前
酷波er应助crybaby采纳,获得10
23秒前
24秒前
小二郎应助LM采纳,获得10
24秒前
孤独的芒果完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109850
求助须知:如何正确求助?哪些是违规求助? 4318475
关于积分的说明 13454352
捐赠科研通 4148445
什么是DOI,文献DOI怎么找? 2273185
邀请新用户注册赠送积分活动 1275349
关于科研通互助平台的介绍 1213641