已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparative study on the performance of different machine learning techniques to predict the shear strength of RC deep beams: Model selection and industry implications

计算机科学 人工智能 机器学习 人工神经网络 克里金 支持向量机 随机性 高斯过程 Boosting(机器学习) 决策树 数据挖掘 高斯分布 数学 统计 量子力学 物理
作者
Khuong Le-Nguyen,Hoa T. Trinh,Thanh Trung Nguyên,Hoàng Long Nguyễn
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:230: 120649-120649
标识
DOI:10.1016/j.eswa.2023.120649
摘要

This study presents a comprehensive and rigorous process to develop the most appropriate machine learning (ML) model for predicting the shear strength of RC deep beams (RCDBs). The process consists of the crucial stages and state-of-the-art techniques of ML, including the development of ML models, selection of input features using Shapley Additive explanations, optimisation of the training process, assessment of data randomness, comparisons to the conventional practice codes, and development of novel web-based design platform based on the proposed ML model. For this purpose, seven machine learning models, i.e., linear regression, artificial neural networks (ANN), support vector machines, decision trees, ensemble of trees (EoT), extreme gradient boosting (XGBoost), and Gaussian process regression (GPR) were developed to predict the shear strength of RC deep beams based on a database of 518 samples with 15 input features. The four best models (i.e., ANN, EoT, XGBoost, and GPR) were then considered to assess the influence of varying the number of input features on the prediction performance. The results proved that GPR is the most reliable and accurate ML model. In addition, a set of nine optimal input features is proposed for predicting the shear strength of RCDBs. It was observed that randomly dividing the dataset into training and testing sets can significantly impact the predicted results. In some cases, the R2 value dropped to under 0.78, highlighting the importance of carefully considering the methodology for dividing the dataset when conducting machine learning experiments. The shear strength predicted by ML models was then compared with the three most prominent practice codes (i.e., ACI318, EC2, CSA 23.3-04), which indicated ML approach is highly reliable and accurate over conventional methods. In addition, the study used the Monte Carlo method to evaluate the robustness of the machine learning models and developed a user-interface platform to facilitate the practical application of the proposed machine learning model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的冬易完成签到 ,获得积分10
1秒前
脑洞疼应助f1mike110采纳,获得10
1秒前
Orange应助超级野狼采纳,获得10
1秒前
2秒前
pay发布了新的文献求助10
4秒前
5秒前
细心怀亦完成签到 ,获得积分10
9秒前
sssyyy发布了新的文献求助10
10秒前
Guts发布了新的文献求助10
10秒前
15秒前
zl13332完成签到 ,获得积分10
17秒前
shy完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
111发布了新的文献求助10
22秒前
22秒前
25秒前
26秒前
马宁婧完成签到 ,获得积分10
29秒前
柠木完成签到 ,获得积分10
31秒前
Dr.c发布了新的文献求助10
33秒前
34秒前
小明完成签到,获得积分10
35秒前
Airsjz发布了新的文献求助10
40秒前
40秒前
Jemma完成签到 ,获得积分10
41秒前
轨迹应助小彬采纳,获得10
42秒前
Guts发布了新的文献求助10
43秒前
44秒前
DD发布了新的文献求助10
44秒前
zp19877891完成签到,获得积分10
45秒前
毛舒敏完成签到 ,获得积分10
47秒前
Aris发布了新的文献求助30
48秒前
不许动完成签到 ,获得积分10
48秒前
爆米花应助研究牲采纳,获得10
51秒前
小刘完成签到,获得积分10
52秒前
科研通AI6.1应助Guts采纳,获得10
53秒前
武愿完成签到 ,获得积分10
53秒前
53秒前
鬼笔环肽完成签到 ,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754502
求助须知:如何正确求助?哪些是违规求助? 5487138
关于积分的说明 15380163
捐赠科研通 4893049
什么是DOI,文献DOI怎么找? 2631710
邀请新用户注册赠送积分活动 1579665
关于科研通互助平台的介绍 1535387