Practical Aspects of Perimeter Intrusion Detection and Nuisance Suppression for Distributed Fiber-Optic Sensors

入侵检测系统 光时域反射计 计算机科学 检波器 光纤传感器 假警报 恒虚警率 实时计算 光纤 遥感 人工智能 声学 电信 物理 光纤分路器 地质学
作者
Seedahmed S. Mahmoud
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:6
标识
DOI:10.1109/tim.2023.3284133
摘要

Fiber optic sensors protect resources and critical infrastructure in commercial and defense applications. Distributed fiber optic sensors can be designed using various sensing technologies, such as Mach–Zehnder interferometers (MZIs), Michelson interferometers, and phase-sensitive optical time-domain reflectometry ( $\Phi $ -OTDR). The ability to eliminate nuisance alarms without compromising the probability of detection (POD) is critical for accepting perimeter intrusion detection systems (PIDSs). In this article, we discuss the importance of sensor installation, the validity of intrusion tests, the effects of the signal-to-noise ratio (SNR) and frequency contents on time lag estimation, quantification of the POD and nuisance alarm rate (NAR), and the need to validate intrusion recognition algorithms in realistic environments. Moreover, this article demonstrates the precision of intrusion localization at various locations along the perimeter, both during torrential rain (TR) and under calm weather conditions. In a longitudinal study, this article also demonstrates the effectiveness of level crossing (LC)-based intrusion detection algorithms, integrated into Mach–Zehnder (MZ)-distributed sensors, at a practical site. During the longitudinal investigation, we found that nuisance alarms could be suppressed for rainfall rates exceeding 225 mm/day while detecting intrusions and nuisances simultaneously. The intrusion location spread in quiet and rainy conditions was within ±10 m with a 95% confidence level of 0.81. In addition, the convolutional neural network (CNN) architectures, AlexNet, ResNet-50, VGG-16, and GoogLeNet, were investigated in terms of performance and suitability to MZ-based PIDS. The CNN models can discriminate between intrusion and TR events with a 98.04% accuracy rate. The latency analysis revealed that the LC-based algorithm outperformed the CNN models in terms of processing time. This research is intended to guide the development of PIDS and its algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瓶盖的玉莹厨师长完成签到,获得积分10
刚刚
Kira发布了新的文献求助10
2秒前
哦o完成签到,获得积分10
4秒前
青城山下小星瞳完成签到,获得积分10
7秒前
御坂10576号完成签到,获得积分10
7秒前
8秒前
WuYiHHH完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
buno应助小董继续努力采纳,获得10
14秒前
summerer完成签到,获得积分10
14秒前
是小天呀完成签到 ,获得积分10
14秒前
不安忆寒发布了新的文献求助10
15秒前
所所应助仁清采纳,获得20
15秒前
Kraghc发布了新的文献求助100
16秒前
喜悦的天玉完成签到,获得积分10
17秒前
刘柑橘完成签到,获得积分10
17秒前
贪玩的秋柔应助南山南采纳,获得10
19秒前
脑洞疼应助吴宇杰采纳,获得10
19秒前
烟花应助anhao采纳,获得10
19秒前
甜美的煜祺完成签到,获得积分10
20秒前
20秒前
静静完成签到 ,获得积分10
21秒前
22秒前
23秒前
卧病i关注了科研通微信公众号
23秒前
碧蓝笑槐完成签到,获得积分20
23秒前
26秒前
26秒前
碧蓝笑槐发布了新的文献求助30
26秒前
27秒前
27秒前
28秒前
Lucas应助欣欣子采纳,获得10
28秒前
正直幼枫完成签到,获得积分20
28秒前
小董继续努力完成签到,获得积分20
29秒前
大头完成签到 ,获得积分10
29秒前
anhao发布了新的文献求助10
31秒前
Kraghc完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604172
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857380
捐赠科研通 4697016
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851