Practical Aspects of Perimeter Intrusion Detection and Nuisance Suppression for Distributed Fiber-Optic Sensors

入侵检测系统 光时域反射计 计算机科学 检波器 光纤传感器 假警报 恒虚警率 实时计算 光纤 遥感 人工智能 声学 电信 物理 光纤分路器 地质学
作者
Seedahmed S. Mahmoud
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:6
标识
DOI:10.1109/tim.2023.3284133
摘要

Fiber optic sensors protect resources and critical infrastructure in commercial and defense applications. Distributed fiber optic sensors can be designed using various sensing technologies, such as Mach–Zehnder interferometers (MZIs), Michelson interferometers, and phase-sensitive optical time-domain reflectometry ( $\Phi $ -OTDR). The ability to eliminate nuisance alarms without compromising the probability of detection (POD) is critical for accepting perimeter intrusion detection systems (PIDSs). In this article, we discuss the importance of sensor installation, the validity of intrusion tests, the effects of the signal-to-noise ratio (SNR) and frequency contents on time lag estimation, quantification of the POD and nuisance alarm rate (NAR), and the need to validate intrusion recognition algorithms in realistic environments. Moreover, this article demonstrates the precision of intrusion localization at various locations along the perimeter, both during torrential rain (TR) and under calm weather conditions. In a longitudinal study, this article also demonstrates the effectiveness of level crossing (LC)-based intrusion detection algorithms, integrated into Mach–Zehnder (MZ)-distributed sensors, at a practical site. During the longitudinal investigation, we found that nuisance alarms could be suppressed for rainfall rates exceeding 225 mm/day while detecting intrusions and nuisances simultaneously. The intrusion location spread in quiet and rainy conditions was within ±10 m with a 95% confidence level of 0.81. In addition, the convolutional neural network (CNN) architectures, AlexNet, ResNet-50, VGG-16, and GoogLeNet, were investigated in terms of performance and suitability to MZ-based PIDS. The CNN models can discriminate between intrusion and TR events with a 98.04% accuracy rate. The latency analysis revealed that the LC-based algorithm outperformed the CNN models in terms of processing time. This research is intended to guide the development of PIDS and its algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
wanci应助小李呀采纳,获得10
刚刚
1秒前
橘涂初九完成签到,获得积分20
1秒前
hashtag发布了新的文献求助10
1秒前
2秒前
冠心没有病完成签到,获得积分10
2秒前
日尧发布了新的文献求助10
3秒前
溪风不渡发布了新的文献求助10
3秒前
Sun完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
zxx发布了新的文献求助10
4秒前
Ming完成签到,获得积分10
4秒前
FashionBoy应助hyx采纳,获得10
4秒前
mxtsusan发布了新的文献求助10
5秒前
vfvv发布了新的文献求助30
5秒前
123lura发布了新的文献求助10
5秒前
JIUZHE发布了新的文献求助10
5秒前
丘比特应助无颜猪采纳,获得10
6秒前
kbj发布了新的文献求助10
6秒前
苹果王子6699完成签到 ,获得积分10
6秒前
哎嘿发布了新的文献求助10
6秒前
人不犯二枉少年完成签到,获得积分10
7秒前
7秒前
西木发布了新的文献求助10
8秒前
coesite完成签到,获得积分10
8秒前
大方的嫣完成签到,获得积分10
8秒前
9秒前
Sano完成签到 ,获得积分10
9秒前
黙宇循光发布了新的文献求助10
9秒前
9秒前
9秒前
今后应助可乐不加冰采纳,获得10
9秒前
Allonz应助肝不动的牛马采纳,获得10
11秒前
mxtsusan完成签到,获得积分20
12秒前
超浓抹茶椰完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516814
求助须知:如何正确求助?哪些是违规求助? 4609871
关于积分的说明 14518264
捐赠科研通 4546672
什么是DOI,文献DOI怎么找? 2491314
邀请新用户注册赠送积分活动 1473067
关于科研通互助平台的介绍 1444924