重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Practical Aspects of Perimeter Intrusion Detection and Nuisance Suppression for Distributed Fiber-Optic Sensors

入侵检测系统 光时域反射计 计算机科学 检波器 光纤传感器 假警报 恒虚警率 实时计算 光纤 遥感 人工智能 声学 电信 物理 光纤分路器 地质学
作者
Seedahmed S. Mahmoud
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:6
标识
DOI:10.1109/tim.2023.3284133
摘要

Fiber optic sensors protect resources and critical infrastructure in commercial and defense applications. Distributed fiber optic sensors can be designed using various sensing technologies, such as Mach–Zehnder interferometers (MZIs), Michelson interferometers, and phase-sensitive optical time-domain reflectometry ( $\Phi $ -OTDR). The ability to eliminate nuisance alarms without compromising the probability of detection (POD) is critical for accepting perimeter intrusion detection systems (PIDSs). In this article, we discuss the importance of sensor installation, the validity of intrusion tests, the effects of the signal-to-noise ratio (SNR) and frequency contents on time lag estimation, quantification of the POD and nuisance alarm rate (NAR), and the need to validate intrusion recognition algorithms in realistic environments. Moreover, this article demonstrates the precision of intrusion localization at various locations along the perimeter, both during torrential rain (TR) and under calm weather conditions. In a longitudinal study, this article also demonstrates the effectiveness of level crossing (LC)-based intrusion detection algorithms, integrated into Mach–Zehnder (MZ)-distributed sensors, at a practical site. During the longitudinal investigation, we found that nuisance alarms could be suppressed for rainfall rates exceeding 225 mm/day while detecting intrusions and nuisances simultaneously. The intrusion location spread in quiet and rainy conditions was within ±10 m with a 95% confidence level of 0.81. In addition, the convolutional neural network (CNN) architectures, AlexNet, ResNet-50, VGG-16, and GoogLeNet, were investigated in terms of performance and suitability to MZ-based PIDS. The CNN models can discriminate between intrusion and TR events with a 98.04% accuracy rate. The latency analysis revealed that the LC-based algorithm outperformed the CNN models in terms of processing time. This research is intended to guide the development of PIDS and its algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花与海完成签到,获得积分10
刚刚
1秒前
1秒前
北巷栀酒完成签到,获得积分10
1秒前
1秒前
1秒前
XinHu发布了新的文献求助10
1秒前
bkagyin应助鹰隼采纳,获得10
2秒前
duuu发布了新的文献求助10
3秒前
6666完成签到,获得积分10
3秒前
科研通AI6应助毅毅子采纳,获得10
3秒前
4秒前
酷波er应助火星上的香水采纳,获得10
5秒前
完美世界应助Fred采纳,获得10
5秒前
程瑞哲发布了新的文献求助100
5秒前
离幽完成签到,获得积分10
5秒前
花鸟风月evereo完成签到,获得积分10
5秒前
5秒前
起名废人应助倚栏听风采纳,获得10
6秒前
南絮完成签到,获得积分10
6秒前
橘子1发布了新的文献求助10
6秒前
6秒前
共享精神应助YTT采纳,获得10
6秒前
精明松思发布了新的文献求助10
7秒前
奉雨眠发布了新的文献求助10
7秒前
Wine1022发布了新的文献求助10
7秒前
子车茗应助耍酷草莓采纳,获得20
7秒前
旋风大普忒头战神完成签到 ,获得积分10
7秒前
须臾发布了新的文献求助10
8秒前
8秒前
Zx_1993应助111采纳,获得10
8秒前
8秒前
9秒前
小梁同志发布了新的文献求助10
10秒前
上官若男应助开心就好采纳,获得10
10秒前
XinHu完成签到,获得积分20
10秒前
蜉蝣发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605