Practical Aspects of Perimeter Intrusion Detection and Nuisance Suppression for Distributed Fiber-Optic Sensors

入侵检测系统 光时域反射计 计算机科学 检波器 光纤传感器 假警报 恒虚警率 实时计算 光纤 遥感 人工智能 声学 电信 物理 光纤分路器 地质学
作者
Seedahmed S. Mahmoud
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:6
标识
DOI:10.1109/tim.2023.3284133
摘要

Fiber optic sensors protect resources and critical infrastructure in commercial and defense applications. Distributed fiber optic sensors can be designed using various sensing technologies, such as Mach–Zehnder interferometers (MZIs), Michelson interferometers, and phase-sensitive optical time-domain reflectometry ( $\Phi $ -OTDR). The ability to eliminate nuisance alarms without compromising the probability of detection (POD) is critical for accepting perimeter intrusion detection systems (PIDSs). In this article, we discuss the importance of sensor installation, the validity of intrusion tests, the effects of the signal-to-noise ratio (SNR) and frequency contents on time lag estimation, quantification of the POD and nuisance alarm rate (NAR), and the need to validate intrusion recognition algorithms in realistic environments. Moreover, this article demonstrates the precision of intrusion localization at various locations along the perimeter, both during torrential rain (TR) and under calm weather conditions. In a longitudinal study, this article also demonstrates the effectiveness of level crossing (LC)-based intrusion detection algorithms, integrated into Mach–Zehnder (MZ)-distributed sensors, at a practical site. During the longitudinal investigation, we found that nuisance alarms could be suppressed for rainfall rates exceeding 225 mm/day while detecting intrusions and nuisances simultaneously. The intrusion location spread in quiet and rainy conditions was within ±10 m with a 95% confidence level of 0.81. In addition, the convolutional neural network (CNN) architectures, AlexNet, ResNet-50, VGG-16, and GoogLeNet, were investigated in terms of performance and suitability to MZ-based PIDS. The CNN models can discriminate between intrusion and TR events with a 98.04% accuracy rate. The latency analysis revealed that the LC-based algorithm outperformed the CNN models in terms of processing time. This research is intended to guide the development of PIDS and its algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助伶俐百川采纳,获得10
刚刚
慕青应助娜娜采纳,获得10
1秒前
淡定如之完成签到,获得积分10
1秒前
自信的海蓝完成签到 ,获得积分10
1秒前
汉堡包应助ma采纳,获得10
5秒前
开放尔丝发布了新的文献求助10
8秒前
8秒前
cj完成签到,获得积分10
8秒前
9秒前
11秒前
缪忆寒发布了新的文献求助10
12秒前
13秒前
搜集达人应助Lili采纳,获得10
14秒前
Jasper应助夏日重现采纳,获得10
14秒前
略略完成签到,获得积分10
15秒前
16秒前
香蕉觅云应助啦某某采纳,获得10
19秒前
20秒前
here完成签到 ,获得积分10
22秒前
enndyou完成签到,获得积分10
23秒前
kevin驳回了HZW应助
24秒前
科研通AI2S应助鲤鱼冰海采纳,获得10
24秒前
Hello应助稳重的秋天采纳,获得10
25秒前
26秒前
26秒前
毛毛酱发布了新的文献求助10
26秒前
李健应助lll采纳,获得10
29秒前
夏日重现发布了新的文献求助10
33秒前
不配.应助maozhehai29999采纳,获得40
33秒前
zhu97应助Helium采纳,获得20
35秒前
假面绅士发布了新的文献求助10
35秒前
tisansmar完成签到,获得积分10
35秒前
nn发布了新的文献求助10
36秒前
京苏完成签到,获得积分10
40秒前
学术辣鸡完成签到,获得积分10
40秒前
wangayting完成签到,获得积分10
42秒前
111完成签到,获得积分10
44秒前
Hello应助123采纳,获得10
44秒前
薰硝壤应助nn采纳,获得100
46秒前
yoyo发布了新的文献求助10
47秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141332
求助须知:如何正确求助?哪些是违规求助? 2792381
关于积分的说明 7802238
捐赠科研通 2448574
什么是DOI,文献DOI怎么找? 1302618
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237