Practical Aspects of Perimeter Intrusion Detection and Nuisance Suppression for Distributed Fiber-Optic Sensors

入侵检测系统 光时域反射计 计算机科学 检波器 光纤传感器 假警报 恒虚警率 实时计算 光纤 遥感 人工智能 声学 电信 物理 光纤分路器 地质学
作者
Seedahmed S. Mahmoud
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:6
标识
DOI:10.1109/tim.2023.3284133
摘要

Fiber optic sensors protect resources and critical infrastructure in commercial and defense applications. Distributed fiber optic sensors can be designed using various sensing technologies, such as Mach–Zehnder interferometers (MZIs), Michelson interferometers, and phase-sensitive optical time-domain reflectometry ( $\Phi $ -OTDR). The ability to eliminate nuisance alarms without compromising the probability of detection (POD) is critical for accepting perimeter intrusion detection systems (PIDSs). In this article, we discuss the importance of sensor installation, the validity of intrusion tests, the effects of the signal-to-noise ratio (SNR) and frequency contents on time lag estimation, quantification of the POD and nuisance alarm rate (NAR), and the need to validate intrusion recognition algorithms in realistic environments. Moreover, this article demonstrates the precision of intrusion localization at various locations along the perimeter, both during torrential rain (TR) and under calm weather conditions. In a longitudinal study, this article also demonstrates the effectiveness of level crossing (LC)-based intrusion detection algorithms, integrated into Mach–Zehnder (MZ)-distributed sensors, at a practical site. During the longitudinal investigation, we found that nuisance alarms could be suppressed for rainfall rates exceeding 225 mm/day while detecting intrusions and nuisances simultaneously. The intrusion location spread in quiet and rainy conditions was within ±10 m with a 95% confidence level of 0.81. In addition, the convolutional neural network (CNN) architectures, AlexNet, ResNet-50, VGG-16, and GoogLeNet, were investigated in terms of performance and suitability to MZ-based PIDS. The CNN models can discriminate between intrusion and TR events with a 98.04% accuracy rate. The latency analysis revealed that the LC-based algorithm outperformed the CNN models in terms of processing time. This research is intended to guide the development of PIDS and its algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王志新完成签到,获得积分10
刚刚
远方橙发布了新的文献求助30
刚刚
woxiangbiye发布了新的文献求助10
刚刚
科研通AI5应助自信南霜采纳,获得10
1秒前
子星完成签到,获得积分10
1秒前
2秒前
解博童发布了新的文献求助10
2秒前
邢夏之完成签到,获得积分10
2秒前
3秒前
顾矜应助开心的迎海采纳,获得10
3秒前
Swagger完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
我是老大应助sun采纳,获得10
4秒前
充电宝应助灵巧晓亦采纳,获得10
5秒前
木几木几发布了新的文献求助30
5秒前
风衣拖地完成签到 ,获得积分10
6秒前
6秒前
方老师完成签到,获得积分10
6秒前
彩色的笑旋完成签到,获得积分20
6秒前
wanci应助干净士晋采纳,获得10
7秒前
做好自己发布了新的文献求助10
7秒前
狗宅发布了新的文献求助10
8秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
skyscraper完成签到,获得积分10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
Tourist应助科研通管家采纳,获得150
10秒前
精明幻悲发布了新的文献求助10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
兰瓜瓜完成签到,获得积分10
10秒前
iNk应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得10
10秒前
唐泽雪穗应助tczw667采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
zcl应助科研通管家采纳,获得150
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590