Practical Aspects of Perimeter Intrusion Detection and Nuisance Suppression for Distributed Fiber-Optic Sensors

入侵检测系统 光时域反射计 计算机科学 检波器 光纤传感器 假警报 恒虚警率 实时计算 光纤 遥感 人工智能 声学 电信 物理 光纤分路器 地质学
作者
Seedahmed S. Mahmoud
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:6
标识
DOI:10.1109/tim.2023.3284133
摘要

Fiber optic sensors protect resources and critical infrastructure in commercial and defense applications. Distributed fiber optic sensors can be designed using various sensing technologies, such as Mach–Zehnder interferometers (MZIs), Michelson interferometers, and phase-sensitive optical time-domain reflectometry ( $\Phi $ -OTDR). The ability to eliminate nuisance alarms without compromising the probability of detection (POD) is critical for accepting perimeter intrusion detection systems (PIDSs). In this article, we discuss the importance of sensor installation, the validity of intrusion tests, the effects of the signal-to-noise ratio (SNR) and frequency contents on time lag estimation, quantification of the POD and nuisance alarm rate (NAR), and the need to validate intrusion recognition algorithms in realistic environments. Moreover, this article demonstrates the precision of intrusion localization at various locations along the perimeter, both during torrential rain (TR) and under calm weather conditions. In a longitudinal study, this article also demonstrates the effectiveness of level crossing (LC)-based intrusion detection algorithms, integrated into Mach–Zehnder (MZ)-distributed sensors, at a practical site. During the longitudinal investigation, we found that nuisance alarms could be suppressed for rainfall rates exceeding 225 mm/day while detecting intrusions and nuisances simultaneously. The intrusion location spread in quiet and rainy conditions was within ±10 m with a 95% confidence level of 0.81. In addition, the convolutional neural network (CNN) architectures, AlexNet, ResNet-50, VGG-16, and GoogLeNet, were investigated in terms of performance and suitability to MZ-based PIDS. The CNN models can discriminate between intrusion and TR events with a 98.04% accuracy rate. The latency analysis revealed that the LC-based algorithm outperformed the CNN models in terms of processing time. This research is intended to guide the development of PIDS and its algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emily完成签到,获得积分10
1秒前
Hello应助Aurora采纳,获得10
1秒前
小刀发布了新的文献求助10
1秒前
淳之风发布了新的文献求助10
1秒前
星晴发布了新的文献求助10
1秒前
杨怂怂发布了新的文献求助10
1秒前
顺心梦山完成签到,获得积分10
1秒前
怜南完成签到,获得积分10
1秒前
2秒前
2秒前
穆尘发布了新的文献求助10
2秒前
YH发布了新的文献求助10
2秒前
火星上的一斩完成签到 ,获得积分10
3秒前
爱lx完成签到,获得积分10
3秒前
小马甲应助无敌小神腿采纳,获得10
3秒前
爱撒娇的大开完成签到 ,获得积分10
3秒前
4秒前
饱满的大碗完成签到 ,获得积分10
4秒前
5秒前
5秒前
感动归尘发布了新的文献求助10
5秒前
5秒前
CipherSage应助LJR采纳,获得10
5秒前
小怪完成签到,获得积分10
5秒前
6秒前
6秒前
tao完成签到 ,获得积分10
6秒前
祝大家顺顺利利毕业完成签到,获得积分10
6秒前
大个应助ATOM采纳,获得10
6秒前
研友_VZG7GZ应助李天王采纳,获得10
6秒前
流川封完成签到,获得积分10
6秒前
鑫渊完成签到,获得积分10
6秒前
从容如曼完成签到,获得积分10
7秒前
7秒前
科研通AI6应助酷酷的紫南采纳,获得10
7秒前
木泽完成签到,获得积分10
7秒前
Lucas应助淳之风采纳,获得10
7秒前
于于发布了新的文献求助100
8秒前
平常的如凡完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402368
求助须知:如何正确求助?哪些是违规求助? 4520959
关于积分的说明 14083248
捐赠科研通 4435011
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426678
关于科研通互助平台的介绍 1405432