Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles

数量结构-活动关系 毒性 机器学习 人工智能 化学 纳米颗粒 生化工程 计算机科学 工程类 化学工程 有机化学
作者
Fan Zhang,Zhuang Wang,Willie J.G.M. Peijnenburg,Martina G. Vijver
出处
期刊:Environment International [Elsevier]
卷期号:177: 108025-108025 被引量:20
标识
DOI:10.1016/j.envint.2023.108025
摘要

Research on theoretical prediction methods for the mixture toxicity of engineered nanoparticles (ENPs) faces significant challenges. The application of in silico methods based on machine learning is emerging as an effective strategy to address the toxicity prediction of chemical mixtures. Herein, we combined toxicity data generated in our lab with experimental data reported in the literature to predict the combined toxicity of seven metallic ENPs for Escherichia coli at different mixing ratios (22 binary combinations). We thereafter applied two machine learning (ML) techniques, support vector machine (SVM) and neural network (NN), and compared the differences in the ability to predict the combined toxicity by means of the ML-based methods and two component-based mixture models: independent action and concentration addition. Among 72 developed quantitative structure–activity relationship (QSAR) models by the ML methods, two SVM-QSAR models and two NN-QSAR models showed good performance. Moreover, an NN-based QSAR model combined with two molecular descriptors, namely enthalpy of formation of a gaseous cation and metal oxide standard molar enthalpy of formation, showed the best predictive power for the internal dataset (R2test = 0.911, adjusted R2test = 0.733, RMSEtest = 0.091, and MAEtest = 0.067) and for the combination of internal and external datasets (R2test = 0.908, adjusted R2test = 0.871, RMSEtest = 0.255, and MAEtest = 0.181). In addition, the developed QSAR models performed better than the component-based models. The estimation of the applicability domain of the selected QSAR models showed that all the binary mixtures in training and test sets were in the applicability domain. This study approach could provide a methodological and theoretical basis for the ecological risk assessment of mixtures of ENPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助vv采纳,获得10
刚刚
美丽访云发布了新的文献求助20
1秒前
1秒前
仁爱的雁荷完成签到,获得积分10
1秒前
STAUDINGER完成签到,获得积分20
2秒前
2秒前
3秒前
现实的白开水完成签到,获得积分10
3秒前
认真的映安完成签到,获得积分10
3秒前
4秒前
STAUDINGER发布了新的文献求助10
4秒前
ZR14124完成签到,获得积分10
4秒前
5秒前
5秒前
默默的甜瓜完成签到,获得积分10
5秒前
斯文败类应助梁漂亮采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
成就雨筠应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
8秒前
Zn应助科研通管家采纳,获得20
8秒前
李爱国应助科研通管家采纳,获得30
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得80
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
温婉的凝丹完成签到 ,获得积分10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
RC_Wang应助科研通管家采纳,获得20
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
zwy109完成签到 ,获得积分10
9秒前
金容发布了新的文献求助10
10秒前
夏天来了发布了新的文献求助30
10秒前
认真元槐完成签到 ,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557769
求助须知:如何正确求助?哪些是违规求助? 3132881
关于积分的说明 9399652
捐赠科研通 2832982
什么是DOI,文献DOI怎么找? 1557202
邀请新用户注册赠送积分活动 727132
科研通“疑难数据库(出版商)”最低求助积分说明 716197