Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data

计算机科学 聚类分析 人工智能 成对比较 约束(计算机辅助设计) 稳健性(进化) 特征学习 特征(语言学) 模式识别(心理学) 数据挖掘 机器学习 数学 哲学 几何学 基因 生物化学 化学 语言学
作者
Yanglan Gan,Yuhan Chen,Guangwei Xu,Wenjing Guo,Guobing Zou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:3
标识
DOI:10.1093/bib/bbad222
摘要

Abstract Single-cell RNA sequencing (scRNA-seq) measures transcriptome-wide gene expression at single-cell resolution. Clustering analysis of scRNA-seq data enables researchers to characterize cell types and states, shedding new light on cell-to-cell heterogeneity in complex tissues. Recently, self-supervised contrastive learning has become a prominent technique for underlying feature representation learning. However, for the noisy, high-dimensional and sparse scRNA-seq data, existing methods still encounter difficulties in capturing the intrinsic patterns and structures of cells, and seldom utilize prior knowledge, resulting in clusters that mismatch with the real situation. To this end, we propose scDECL, a novel deep enhanced constraint clustering algorithm for scRNA-seq data analysis based on contrastive learning and pairwise constraints. Specifically, based on interpolated contrastive learning, a pre-training model is trained to learn the feature embedding, and then perform clustering according to the constructed enhanced pairwise constraint. In the pre-training stage, a mixup data augmentation strategy and interpolation loss is introduced to improve the diversity of the dataset and the robustness of the model. In the clustering stage, the prior information is converted into enhanced pairwise constraints to guide the clustering. To validate the performance of scDECL, we compare it with six state-of-the-art algorithms on six real scRNA-seq datasets. The experimental results demonstrate the proposed algorithm outperforms the six competing methods. In addition, the ablation studies on each module of the algorithm indicate that these modules are complementary to each other and effective in improving the performance of the proposed algorithm. Our method scDECL is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.com/DBLABDHU/scDECL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助哈哈哈哈哈哈采纳,获得10
刚刚
李小莉0419发布了新的文献求助10
刚刚
Ava应助MC采纳,获得10
1秒前
baobaot发布了新的文献求助30
1秒前
1秒前
承乐应助小豆包采纳,获得10
1秒前
英姑应助小豆包采纳,获得10
1秒前
秋寒完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
斯文败类应助mikiisme采纳,获得10
3秒前
algain完成签到,获得积分10
3秒前
Wizzzzzzzy发布了新的文献求助10
3秒前
necos发布了新的文献求助10
6秒前
6秒前
7秒前
fmx完成签到,获得积分10
7秒前
残剑月发布了新的文献求助10
8秒前
8秒前
weihongjuan发布了新的文献求助10
8秒前
帅气的馒头应助酷炫初雪采纳,获得10
8秒前
janette完成签到,获得积分10
9秒前
爆米花应助乌衣白马采纳,获得10
9秒前
9秒前
财神爷心尖尖的宝儿完成签到,获得积分10
10秒前
zyc发布了新的文献求助10
10秒前
nn完成签到,获得积分20
10秒前
阿屁屁猪完成签到,获得积分10
12秒前
12秒前
TearMarks完成签到 ,获得积分10
12秒前
小白发布了新的文献求助200
12秒前
12秒前
酷波er应助baobaot采纳,获得10
13秒前
勿忘9451发布了新的文献求助10
13秒前
研友_Z6G2D8完成签到,获得积分10
13秒前
可爱的函函应助pjjpk01采纳,获得10
14秒前
贝尔摩德发布了新的文献求助10
15秒前
CR完成签到,获得积分10
16秒前
Liuya发布了新的文献求助10
16秒前
16秒前
科目三应助辛勤面包采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836