已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data

计算机科学 聚类分析 人工智能 成对比较 约束(计算机辅助设计) 稳健性(进化) 特征学习 特征(语言学) 模式识别(心理学) 数据挖掘 机器学习 数学 哲学 几何学 基因 生物化学 化学 语言学
作者
Yanglan Gan,Yuhan Chen,Guangwei Xu,Wenjing Guo,Guobing Zou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:3
标识
DOI:10.1093/bib/bbad222
摘要

Abstract Single-cell RNA sequencing (scRNA-seq) measures transcriptome-wide gene expression at single-cell resolution. Clustering analysis of scRNA-seq data enables researchers to characterize cell types and states, shedding new light on cell-to-cell heterogeneity in complex tissues. Recently, self-supervised contrastive learning has become a prominent technique for underlying feature representation learning. However, for the noisy, high-dimensional and sparse scRNA-seq data, existing methods still encounter difficulties in capturing the intrinsic patterns and structures of cells, and seldom utilize prior knowledge, resulting in clusters that mismatch with the real situation. To this end, we propose scDECL, a novel deep enhanced constraint clustering algorithm for scRNA-seq data analysis based on contrastive learning and pairwise constraints. Specifically, based on interpolated contrastive learning, a pre-training model is trained to learn the feature embedding, and then perform clustering according to the constructed enhanced pairwise constraint. In the pre-training stage, a mixup data augmentation strategy and interpolation loss is introduced to improve the diversity of the dataset and the robustness of the model. In the clustering stage, the prior information is converted into enhanced pairwise constraints to guide the clustering. To validate the performance of scDECL, we compare it with six state-of-the-art algorithms on six real scRNA-seq datasets. The experimental results demonstrate the proposed algorithm outperforms the six competing methods. In addition, the ablation studies on each module of the algorithm indicate that these modules are complementary to each other and effective in improving the performance of the proposed algorithm. Our method scDECL is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.com/DBLABDHU/scDECL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
浮游应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
cherrychou完成签到,获得积分10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
浮浮世世应助科研通管家采纳,获得30
2秒前
打打应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
浮浮世世应助科研通管家采纳,获得30
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
风中问晴发布了新的文献求助10
4秒前
迅速泽洋发布了新的文献求助10
4秒前
5秒前
CXS发布了新的文献求助10
5秒前
7秒前
秀丽的短靴完成签到,获得积分10
7秒前
所所应助吉良吉影采纳,获得10
9秒前
samantha817完成签到,获得积分10
9秒前
JamesPei应助长情火龙果采纳,获得10
10秒前
11秒前
12秒前
唠叨的无敌完成签到 ,获得积分20
12秒前
氢氧化钠Li完成签到,获得积分10
13秒前
朱庆柯发布了新的文献求助10
16秒前
17秒前
zsc发布了新的文献求助20
18秒前
18秒前
szj发布了新的文献求助10
18秒前
iidae完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422