Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data

计算机科学 聚类分析 人工智能 成对比较 约束(计算机辅助设计) 稳健性(进化) 特征学习 特征(语言学) 模式识别(心理学) 数据挖掘 机器学习 数学 哲学 几何学 基因 生物化学 化学 语言学
作者
Yanglan Gan,Yuhan Chen,Guangwei Xu,Wenjing Guo,Guobing Zou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:3
标识
DOI:10.1093/bib/bbad222
摘要

Abstract Single-cell RNA sequencing (scRNA-seq) measures transcriptome-wide gene expression at single-cell resolution. Clustering analysis of scRNA-seq data enables researchers to characterize cell types and states, shedding new light on cell-to-cell heterogeneity in complex tissues. Recently, self-supervised contrastive learning has become a prominent technique for underlying feature representation learning. However, for the noisy, high-dimensional and sparse scRNA-seq data, existing methods still encounter difficulties in capturing the intrinsic patterns and structures of cells, and seldom utilize prior knowledge, resulting in clusters that mismatch with the real situation. To this end, we propose scDECL, a novel deep enhanced constraint clustering algorithm for scRNA-seq data analysis based on contrastive learning and pairwise constraints. Specifically, based on interpolated contrastive learning, a pre-training model is trained to learn the feature embedding, and then perform clustering according to the constructed enhanced pairwise constraint. In the pre-training stage, a mixup data augmentation strategy and interpolation loss is introduced to improve the diversity of the dataset and the robustness of the model. In the clustering stage, the prior information is converted into enhanced pairwise constraints to guide the clustering. To validate the performance of scDECL, we compare it with six state-of-the-art algorithms on six real scRNA-seq datasets. The experimental results demonstrate the proposed algorithm outperforms the six competing methods. In addition, the ablation studies on each module of the algorithm indicate that these modules are complementary to each other and effective in improving the performance of the proposed algorithm. Our method scDECL is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.com/DBLABDHU/scDECL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助FKKKKSY采纳,获得10
刚刚
zzkk发布了新的文献求助10
刚刚
刚刚
1秒前
娜娜发布了新的文献求助10
1秒前
1秒前
2秒前
苗条的天问完成签到,获得积分10
2秒前
陈豆豆发布了新的文献求助10
5秒前
7秒前
8秒前
辉哥发布了新的文献求助10
9秒前
汉堡包应助杨小鸿采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
Akim应助陈豆豆采纳,获得10
11秒前
11秒前
12秒前
12秒前
Vincent完成签到,获得积分20
13秒前
FKKKKSY发布了新的文献求助10
15秒前
星星完成签到,获得积分10
17秒前
SAIL完成签到 ,获得积分10
20秒前
20秒前
华仔应助美满的如柏采纳,获得10
21秒前
111完成签到,获得积分10
22秒前
德国克大夫完成签到,获得积分10
23秒前
keyantong完成签到 ,获得积分10
24秒前
淡然安雁完成签到 ,获得积分10
24秒前
大胆易巧完成签到 ,获得积分10
25秒前
25秒前
123完成签到 ,获得积分10
25秒前
我问问完成签到 ,获得积分10
25秒前
26秒前
26秒前
26秒前
迷失岛完成签到,获得积分10
28秒前
29秒前
护心丹发布了新的文献求助10
29秒前
29秒前
FKKKKSY完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978