Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data

计算机科学 聚类分析 人工智能 成对比较 约束(计算机辅助设计) 稳健性(进化) 特征学习 特征(语言学) 模式识别(心理学) 数据挖掘 机器学习 数学 生物化学 化学 语言学 几何学 哲学 基因
作者
Yanglan Gan,Yuhan Chen,Guangwei Xu,Wenjing Guo,Guobing Zou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:3
标识
DOI:10.1093/bib/bbad222
摘要

Abstract Single-cell RNA sequencing (scRNA-seq) measures transcriptome-wide gene expression at single-cell resolution. Clustering analysis of scRNA-seq data enables researchers to characterize cell types and states, shedding new light on cell-to-cell heterogeneity in complex tissues. Recently, self-supervised contrastive learning has become a prominent technique for underlying feature representation learning. However, for the noisy, high-dimensional and sparse scRNA-seq data, existing methods still encounter difficulties in capturing the intrinsic patterns and structures of cells, and seldom utilize prior knowledge, resulting in clusters that mismatch with the real situation. To this end, we propose scDECL, a novel deep enhanced constraint clustering algorithm for scRNA-seq data analysis based on contrastive learning and pairwise constraints. Specifically, based on interpolated contrastive learning, a pre-training model is trained to learn the feature embedding, and then perform clustering according to the constructed enhanced pairwise constraint. In the pre-training stage, a mixup data augmentation strategy and interpolation loss is introduced to improve the diversity of the dataset and the robustness of the model. In the clustering stage, the prior information is converted into enhanced pairwise constraints to guide the clustering. To validate the performance of scDECL, we compare it with six state-of-the-art algorithms on six real scRNA-seq datasets. The experimental results demonstrate the proposed algorithm outperforms the six competing methods. In addition, the ablation studies on each module of the algorithm indicate that these modules are complementary to each other and effective in improving the performance of the proposed algorithm. Our method scDECL is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.com/DBLABDHU/scDECL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiki发布了新的文献求助10
刚刚
榆木桢楠完成签到,获得积分10
刚刚
科研互通完成签到,获得积分10
刚刚
1秒前
和花花发布了新的文献求助10
1秒前
1秒前
炙热灵发布了新的文献求助10
2秒前
寇旭晗发布了新的文献求助10
2秒前
鲤鱼鸽子完成签到,获得积分0
2秒前
3秒前
年轻的藏今完成签到,获得积分20
3秒前
3秒前
狮子清明尊完成签到,获得积分10
4秒前
Ava应助65146采纳,获得10
4秒前
4秒前
55发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
张同学完成签到,获得积分10
7秒前
7秒前
黄丽发布了新的文献求助10
8秒前
guoke完成签到,获得积分10
8秒前
fanjinzhu完成签到,获得积分10
8秒前
chuanyongcui发布了新的文献求助10
8秒前
8秒前
ding应助狮子清明尊采纳,获得10
8秒前
jasmine发布了新的文献求助10
9秒前
orixero应助优雅冬灵采纳,获得10
9秒前
DaSheng发布了新的文献求助10
9秒前
WSZXQ发布了新的文献求助10
9秒前
wanci应助开放笑卉采纳,获得10
9秒前
Bonnienuit完成签到 ,获得积分10
10秒前
Haley完成签到 ,获得积分10
10秒前
小鹿完成签到 ,获得积分10
10秒前
10秒前
知足肠乐完成签到,获得积分10
10秒前
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730039
求助须知:如何正确求助?哪些是违规求助? 3274929
关于积分的说明 9989600
捐赠科研通 2990336
什么是DOI,文献DOI怎么找? 1641074
邀请新用户注册赠送积分活动 779534
科研通“疑难数据库(出版商)”最低求助积分说明 748266