Design and Validation of a Novel Evaluation Scale to Predict Inpatient Large Vessel Occlusion Strokes: Clinical Assessment Stroke Severity for Inpatient Scale

医学 接收机工作特性 冲程(发动机) 逻辑回归 心房颤动 曲线下面积 预测值 试验预测值 比例(比率) 急诊医学 闭塞 内科学 心脏病学 地图学 地理 工程类 机械工程
作者
Kai Qiu,Ke Wei,Zhenyu Jia,Sheng Liu
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:47 (5): 806-810
标识
DOI:10.1097/rct.0000000000001476
摘要

A large quantity of ischemic stroke events occur in patients hospitalized for non-stroke-related reason. No scale has been developed to identify the large vessel occlusion (LVO) among inpatient stroke alerts. We aimed to develop a novel evaluation scale to predict LVO from in-hospital stroke alerts.Data from consecutive in-hospital stroke alerts were analyzed at a single high volume stroke center between January 2016 and October 2020. We developed a predictive scale based on the first half of patients (training group) using multivariate logistic regression and evaluated it in the remaining half of patients (validation group) adopting receiver operating curve. Receiver operating characteristics of the scale were analyzed to evaluate its value for the detection of LVO.A total of 243 patients were enrolled for further study, among them, 94 (38.7%) had confirmed LVO. Three risk factors independently predicted the presence of LVO: recent cardiac or pulmonary procedure (1 point), neurological deficit scale (≥1: 2 points), and history of atrial fibrillation (1 point). The CAPS scale was generated based on predictive factors and demonstrated highly effective discrimination in identifying the presence of LVO in the training group (area under curve = 0.956) and the validation group (area under curve = 0.940). When the score ≥2, CAPS scale showed 97.9% sensitivity, 79.2% specificity, 74.8% positive predictive value, and 98.3% negative predictive value for discriminating LVO.CAPS scale was developed for identifying LVO among inpatient stroke alerts with high sensitivity and specificity, which may help to quickly prompt responses by appropriate stroke teams.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Profeto应助bird采纳,获得10
刚刚
淳恨战士完成签到,获得积分20
2秒前
杭谷波发布了新的文献求助10
2秒前
杭谷波发布了新的文献求助10
3秒前
杭谷波发布了新的文献求助10
3秒前
杭谷波发布了新的文献求助10
3秒前
杭谷波发布了新的文献求助10
3秒前
杭谷波发布了新的文献求助10
4秒前
杭谷波发布了新的文献求助10
4秒前
杭谷波发布了新的文献求助10
4秒前
杭谷波发布了新的文献求助10
4秒前
杭谷波发布了新的文献求助10
4秒前
杭谷波发布了新的文献求助10
4秒前
杭谷波发布了新的文献求助10
4秒前
杭谷波发布了新的文献求助10
4秒前
冬雪完成签到,获得积分10
6秒前
科研通AI6应助疑疑惑惑采纳,获得10
6秒前
森林完成签到,获得积分20
7秒前
13秒前
大模型应助咖啡采纳,获得10
14秒前
14秒前
浮游应助科研通管家采纳,获得30
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
changping应助科研通管家采纳,获得20
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得30
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
16秒前
16秒前
Ava应助科研通管家采纳,获得10
16秒前
16秒前
20秒前
zhang568完成签到 ,获得积分10
20秒前
rain完成签到 ,获得积分10
20秒前
maoer发布了新的文献求助10
20秒前
空中风也完成签到 ,获得积分10
22秒前
今后应助学林书屋采纳,获得30
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225359
求助须知:如何正确求助?哪些是违规求助? 4397026
关于积分的说明 13685643
捐赠科研通 4261608
什么是DOI,文献DOI怎么找? 2338513
邀请新用户注册赠送积分活动 1335950
关于科研通互助平台的介绍 1291890