亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Contextualized medication event extraction with striding NER and multi-turn QA

计算机科学 自然语言处理 背景(考古学) 人工智能 事件(粒子物理) 命名实体识别 管道(软件) 子序列 集合(抽象数据类型) F1得分 滑动窗口协议 窗口(计算) 任务(项目管理) 数学 古生物学 数学分析 物理 管理 量子力学 程序设计语言 经济 有界函数 生物 操作系统
作者
Tomoki Tsujimura,Koshi Yamada,Ryuki Ida,Makoto Miwa,Yutaka Sasaki
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:144: 104416-104416 被引量:6
标识
DOI:10.1016/j.jbi.2023.104416
摘要

This paper describes contextualized medication event extraction for automatically identifying medication change events with their contexts from clinical notes. The striding named entity recognition (NER) model extracts medication name spans from an input text sequence using a sliding-window approach. Specifically, the striding NER model separates the input sequence into a set of overlapping subsequences of 512 tokens with 128 tokens of stride, processing each subsequence using a large pre-trained language model and aggregating the outputs from the subsequences. The event and context classification has been done with multi-turn question-answering (QA) and span-based models. The span-based model classifies the span of each medication name using the span representation of the language model. In the QA model, event classification is augmented with questions in classifying the change events of each medication name and the context of the change events, while the model architecture is a classification style that is the same as the span-based model. We evaluated our extraction system on the n2c2 2022 Track 1 dataset, which is annotated for medication extraction (ME), event classification (EC), and context classification (CC) from clinical notes. Our system is a pipeline of the striding NER model for ME and the ensemble of the span-based and QA-based models for EC and CC. Our system achieved a combined F-score of 66.47% for the end-to-end contextualized medication event extraction (Release 1), which is the highest score among the participants of the n2c2 2022 Track 1.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
块块发布了新的文献求助10
1秒前
酷波er应助谭代涛采纳,获得10
4秒前
zachary009完成签到 ,获得积分10
17秒前
潇洒冰蓝完成签到,获得积分10
27秒前
45秒前
1分钟前
11112321321完成签到 ,获得积分10
1分钟前
深情安青应助hl采纳,获得10
1分钟前
星辰大海应助块块采纳,获得10
1分钟前
1分钟前
1分钟前
hl发布了新的文献求助10
1分钟前
momo发布了新的文献求助10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
块块发布了新的文献求助10
1分钟前
1分钟前
谭代涛发布了新的文献求助10
2分钟前
2分钟前
块块发布了新的文献求助10
2分钟前
2分钟前
你是我的唯一完成签到 ,获得积分10
3分钟前
块块发布了新的文献求助10
3分钟前
小马甲应助cloe采纳,获得10
4分钟前
块块发布了新的文献求助10
4分钟前
5分钟前
5分钟前
搞怪的水彤完成签到 ,获得积分10
5分钟前
ding应助谭代涛采纳,获得10
5分钟前
5分钟前
5分钟前
谭代涛发布了新的文献求助10
5分钟前
默默善愁发布了新的文献求助10
5分钟前
6分钟前
cloe发布了新的文献求助10
6分钟前
神明完成签到 ,获得积分10
6分钟前
科研通AI6应助块块采纳,获得10
6分钟前
6分钟前
cloe完成签到,获得积分20
6分钟前
量子星尘发布了新的文献求助10
7分钟前
科研通AI2S应助谭代涛采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599843
求助须知:如何正确求助?哪些是违规求助? 4685587
关于积分的说明 14838670
捐赠科研通 4672013
什么是DOI,文献DOI怎么找? 2538317
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470946