Can nanoparticles enhance drug-delivery performance of hydrogels?

药物输送 纳米技术 材料科学
作者
Filippo Rossi,Yuta Kurashina,Hiroaki Onoe
出处
期刊:Nanomedicine [Future Medicine]
卷期号:18 (8): 653-657
标识
DOI:10.2217/nnm-2023-0081
摘要

NanomedicineAhead of Print CommentaryCan nanoparticles enhance drug-delivery performance of hydrogels?Filippo Rossi, Yuta Kurashina & Hiroaki OnoeFilippo Rossi *Author for correspondence: Tel.: +39 022 399 3145; E-mail Address: filippo.rossi@polimi.ithttps://orcid.org/0000-0003-2665-120XDepartment of Chemistry, Materials & Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milan, ItalySearch for more papers by this author, Yuta Kurashina https://orcid.org/0000-0003-3752-7204Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture & Technology, Koganei-shi, Tokyo, 184-0012, JapanSearch for more papers by this author & Hiroaki Onoe https://orcid.org/0000-0003-0048-1580Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa, 223-8522, JapanSearch for more papers by this authorPublished Online:1 Jun 2023https://doi.org/10.2217/nnm-2023-0081AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: drug deliveryhydrogelslasernanoparticlesultrasoundReferences1. Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics 6(9), 1306–1323 (2016).Crossref, Medline, CAS, Google Scholar2. Zhang DX, Esser L, Vasani RB, Thissen H, Voelcker NH. Porous silicon nanomaterials: recent advances in surface engineering for controlled drug-delivery applications. Nanomedicine 14(24), 3213–3230 (2019).Link, CAS, Google Scholar3. Park K. Controlled drug delivery systems: past forward and future back. J. Control. Rel. 190(9), 3–8 (2014).Crossref, CAS, Google Scholar4. Jacob S, Nair AB, Shah J, Sreeharsha N, Gupta S, Shinu P. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics 13(3), 357 (2021).Crossref, CAS, Google Scholar5. Gauthier MA, Gibson MI, Klok HA. Synthesis of functional polymers by post-polymerization modification. Angew. Chem. Int. Edit. 48(1), 48–58 (2008).Crossref, Google Scholar6. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24), 4385–4415 (2003).Crossref, Medline, CAS, Google Scholar7. Mauri E, Chincarini GMF, Rigamonti R, Magagnin L, Sacchetti A, Rossi F. Modulation of electrostatic interactions to improve controlled drug delivery from nanogels. Mater. Sci. Eng. C 72(3), 308–315 (2017).Crossref, CAS, Google Scholar8. Armenia I, Ayllon CC, Herrero BT et al. Photonic and magnetic materials for on-demand local drug delivery. Adv. Drug Deliv. Rev. 191(12), 114584 (2022).Crossref, CAS, Google Scholar9. Karisma VW, Wu W, Lei M et al. UVA-triggered drug release and photo-protection of skin. Front. Cell Dev. Biol. 9(2), 598717 (2021).Crossref, Google Scholar10. Lee JH, Choi JW. Application of plasmonic gold nanoparticle for drug delivery system. Curr. Drug Targets 19(3), 271–280 (2018).Crossref, CAS, Google Scholar11. Moretti L, Mazzanti A, Rossetti A et al. Plasmonic control of drug release efficiency in agarose gel loaded with gold nanoparticle assemblies. Nanophotonics 10(1), 247–257 (2021).Crossref, CAS, Google Scholar12. Takatsuka S, Kubota T, Kurashina Y, Onoe H. Near-infrared-triggered on-demand controlled release of adeno-associated virus from alginate hydrogel microbeads with heat transducer for gene therapy. Small 19(7), 2204139 (2023).Crossref, CAS, Google Scholar13. Dai X, Li X, Liu Y, Yan F. Recent advances in nanoparticles-based photothermal therapy synergizing with immune checkpoint blockade therapy. Mater. Des. 217(5), 110656 (2022).Crossref, CAS, Google Scholar14. Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM. Magnetic drug delivery: where the field is going. Front. Chem. 6(12), 619 (2018).Crossref, CAS, Google Scholar15. Wang Y, Li B, Xu F et al. Tough magnetic chitosan hydrogel nanocomposites for remotely stimulated drug release. Biomacromolecules 19(8), 3351–3360 (2018).Crossref, CAS, Google Scholar16. Lea-Banks H, O'Reilly MA, Hynynen K. Ultrasound-responsive droplets for therapy: a review. J. Control. Rel. 293(1), 144–154 (2019).Crossref, CAS, Google Scholar17. Orita Y, Shimanuki S, Okada S et al. Acoustic-responsive carbon dioxide-loaded liposomes for efficient drug release. Ultrason. Sonochem. 94(3), 106326 (2023).Crossref, CAS, Google Scholar18. An JY, Um W, You DG et al. Gold-installed hyaluronic acid hydrogel for ultrasound-triggered thermal elevation and on-demand cargo release. Int. J. Biol. Macromol. 193(12), 553–561 (2021).Crossref, CAS, Google Scholar19. Meng Z, Zhang Y, She J et al. Ultrasound-mediated remotely controlled nanovaccine delivery for tumor vaccination and individualized cancer immunotherapy. Nano Lett. 21(3), 1228–1237 (2021).Crossref, CAS, Google Scholar20. Kubota T, Kurashina Y, Zhao JY, Ando K, Onoe H. Ultrasound-triggered on-demand drug delivery using hydrogel microbeads with release enhancer. Mater. Des. 203(5), 109580 (2021).Crossref, CAS, Google ScholarFiguresReferencesRelatedDetails Ahead of Print STAY CONNECTED Metrics Downloaded 0 times History Received 17 March 2023 Accepted 25 April 2023 Published online 1 June 2023 Information© 2023 Future Medicine LtdKeywordsdrug deliveryhydrogelslasernanoparticlesultrasoundAuthor contributionsF Rossi, Y Kurashina and H Onoe wrote the first draft and final version of the manuscript.Financial & competing interests disclosureThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.No writing assistance was utilized in the production of this manuscript.PDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助花花采纳,获得10
1秒前
1秒前
JamesPei应助苏桑焉采纳,获得10
1秒前
belssingoo发布了新的文献求助30
2秒前
2秒前
ED应助Ella采纳,获得10
2秒前
2秒前
2秒前
3秒前
恰你发布了新的文献求助30
3秒前
羡鱼完成签到,获得积分10
3秒前
眼睛大飞珍完成签到,获得积分10
3秒前
4秒前
华仔应助宝儿柯察金采纳,获得10
4秒前
Lakebaikal完成签到,获得积分10
5秒前
5秒前
CR7应助非正常死亡采纳,获得20
5秒前
兰兰发布了新的文献求助10
6秒前
华仔应助甜蜜的远山采纳,获得10
6秒前
6秒前
蛋妞发布了新的文献求助30
6秒前
jie发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
7秒前
7秒前
菠萝炒饭应助开放无极采纳,获得10
7秒前
8秒前
8秒前
顾矜应助Aten采纳,获得10
8秒前
菠萝炒饭应助Jiang采纳,获得10
9秒前
OKAY发布了新的文献求助10
9秒前
9秒前
汽水发布了新的文献求助10
10秒前
简单完成签到,获得积分10
10秒前
10秒前
婷玉发布了新的文献求助10
12秒前
英俊的铭应助man采纳,获得10
12秒前
斯文败类应助善良海云采纳,获得10
12秒前
12秒前
13秒前
简单发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154