Can nanoparticles enhance drug-delivery performance of hydrogels?

药物输送 纳米技术 材料科学
作者
Filippo Rossi,Yuta Kurashina,Hiroaki Onoe
出处
期刊:Nanomedicine [Future Medicine]
卷期号:18 (8): 653-657
标识
DOI:10.2217/nnm-2023-0081
摘要

NanomedicineAhead of Print CommentaryCan nanoparticles enhance drug-delivery performance of hydrogels?Filippo Rossi, Yuta Kurashina & Hiroaki OnoeFilippo Rossi *Author for correspondence: Tel.: +39 022 399 3145; E-mail Address: filippo.rossi@polimi.ithttps://orcid.org/0000-0003-2665-120XDepartment of Chemistry, Materials & Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milan, ItalySearch for more papers by this author, Yuta Kurashina https://orcid.org/0000-0003-3752-7204Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture & Technology, Koganei-shi, Tokyo, 184-0012, JapanSearch for more papers by this author & Hiroaki Onoe https://orcid.org/0000-0003-0048-1580Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa, 223-8522, JapanSearch for more papers by this authorPublished Online:1 Jun 2023https://doi.org/10.2217/nnm-2023-0081AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: drug deliveryhydrogelslasernanoparticlesultrasoundReferences1. Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics 6(9), 1306–1323 (2016).Crossref, Medline, CAS, Google Scholar2. Zhang DX, Esser L, Vasani RB, Thissen H, Voelcker NH. Porous silicon nanomaterials: recent advances in surface engineering for controlled drug-delivery applications. Nanomedicine 14(24), 3213–3230 (2019).Link, CAS, Google Scholar3. Park K. Controlled drug delivery systems: past forward and future back. J. Control. Rel. 190(9), 3–8 (2014).Crossref, CAS, Google Scholar4. Jacob S, Nair AB, Shah J, Sreeharsha N, Gupta S, Shinu P. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics 13(3), 357 (2021).Crossref, CAS, Google Scholar5. Gauthier MA, Gibson MI, Klok HA. Synthesis of functional polymers by post-polymerization modification. Angew. Chem. Int. Edit. 48(1), 48–58 (2008).Crossref, Google Scholar6. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24), 4385–4415 (2003).Crossref, Medline, CAS, Google Scholar7. Mauri E, Chincarini GMF, Rigamonti R, Magagnin L, Sacchetti A, Rossi F. Modulation of electrostatic interactions to improve controlled drug delivery from nanogels. Mater. Sci. Eng. C 72(3), 308–315 (2017).Crossref, CAS, Google Scholar8. Armenia I, Ayllon CC, Herrero BT et al. Photonic and magnetic materials for on-demand local drug delivery. Adv. Drug Deliv. Rev. 191(12), 114584 (2022).Crossref, CAS, Google Scholar9. Karisma VW, Wu W, Lei M et al. UVA-triggered drug release and photo-protection of skin. Front. Cell Dev. Biol. 9(2), 598717 (2021).Crossref, Google Scholar10. Lee JH, Choi JW. Application of plasmonic gold nanoparticle for drug delivery system. Curr. Drug Targets 19(3), 271–280 (2018).Crossref, CAS, Google Scholar11. Moretti L, Mazzanti A, Rossetti A et al. Plasmonic control of drug release efficiency in agarose gel loaded with gold nanoparticle assemblies. Nanophotonics 10(1), 247–257 (2021).Crossref, CAS, Google Scholar12. Takatsuka S, Kubota T, Kurashina Y, Onoe H. Near-infrared-triggered on-demand controlled release of adeno-associated virus from alginate hydrogel microbeads with heat transducer for gene therapy. Small 19(7), 2204139 (2023).Crossref, CAS, Google Scholar13. Dai X, Li X, Liu Y, Yan F. Recent advances in nanoparticles-based photothermal therapy synergizing with immune checkpoint blockade therapy. Mater. Des. 217(5), 110656 (2022).Crossref, CAS, Google Scholar14. Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM. Magnetic drug delivery: where the field is going. Front. Chem. 6(12), 619 (2018).Crossref, CAS, Google Scholar15. Wang Y, Li B, Xu F et al. Tough magnetic chitosan hydrogel nanocomposites for remotely stimulated drug release. Biomacromolecules 19(8), 3351–3360 (2018).Crossref, CAS, Google Scholar16. Lea-Banks H, O'Reilly MA, Hynynen K. Ultrasound-responsive droplets for therapy: a review. J. Control. Rel. 293(1), 144–154 (2019).Crossref, CAS, Google Scholar17. Orita Y, Shimanuki S, Okada S et al. Acoustic-responsive carbon dioxide-loaded liposomes for efficient drug release. Ultrason. Sonochem. 94(3), 106326 (2023).Crossref, CAS, Google Scholar18. An JY, Um W, You DG et al. Gold-installed hyaluronic acid hydrogel for ultrasound-triggered thermal elevation and on-demand cargo release. Int. J. Biol. Macromol. 193(12), 553–561 (2021).Crossref, CAS, Google Scholar19. Meng Z, Zhang Y, She J et al. Ultrasound-mediated remotely controlled nanovaccine delivery for tumor vaccination and individualized cancer immunotherapy. Nano Lett. 21(3), 1228–1237 (2021).Crossref, CAS, Google Scholar20. Kubota T, Kurashina Y, Zhao JY, Ando K, Onoe H. Ultrasound-triggered on-demand drug delivery using hydrogel microbeads with release enhancer. Mater. Des. 203(5), 109580 (2021).Crossref, CAS, Google ScholarFiguresReferencesRelatedDetails Ahead of Print STAY CONNECTED Metrics Downloaded 0 times History Received 17 March 2023 Accepted 25 April 2023 Published online 1 June 2023 Information© 2023 Future Medicine LtdKeywordsdrug deliveryhydrogelslasernanoparticlesultrasoundAuthor contributionsF Rossi, Y Kurashina and H Onoe wrote the first draft and final version of the manuscript.Financial & competing interests disclosureThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.No writing assistance was utilized in the production of this manuscript.PDF download

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白藤总是一坨肉完成签到 ,获得积分10
1秒前
jisean发布了新的文献求助10
1秒前
1秒前
Lucas应助蔡继海采纳,获得10
3秒前
BINGBING1230发布了新的文献求助30
3秒前
希望天下0贩的0应助小北采纳,获得10
4秒前
农艳宁发布了新的文献求助30
7秒前
有机分子笼完成签到,获得积分10
8秒前
小北完成签到,获得积分10
10秒前
10秒前
Tan完成签到,获得积分10
12秒前
小手冰凉完成签到,获得积分10
12秒前
夏小胖发布了新的文献求助10
16秒前
蔡继海发布了新的文献求助10
16秒前
17秒前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
18秒前
18秒前
瘦瘦新烟完成签到,获得积分10
19秒前
20秒前
21秒前
小北发布了新的文献求助10
21秒前
蔡继海完成签到,获得积分10
23秒前
vicki发布了新的文献求助10
25秒前
26秒前
wyhx完成签到 ,获得积分10
26秒前
善学以致用应助小九九采纳,获得10
27秒前
27秒前
天天快乐应助学术老6采纳,获得10
28秒前
29秒前
KAOKAO完成签到,获得积分10
30秒前
123456发布了新的文献求助10
31秒前
在荔栀阿完成签到 ,获得积分10
31秒前
vicki完成签到,获得积分20
32秒前
甜美帅哥完成签到 ,获得积分10
34秒前
Lucas应助研友_LNBeyL采纳,获得10
36秒前
二分三分完成签到,获得积分10
37秒前
淡淡的白羊完成签到 ,获得积分10
37秒前
耶耶小豆包完成签到 ,获得积分10
40秒前
40秒前
小二郎应助BINGBING1230采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565699
求助须知:如何正确求助?哪些是违规求助? 4650686
关于积分的说明 14692512
捐赠科研通 4592693
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463316