清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Process modelling integrated with interpretable machine learning for predicting hydrogen and char yield during chemical looping gasification

烧焦 工艺工程 生物量(生态学) 产量(工程) 化学 化学工程 热解 环境科学 工程类 热力学 物理 海洋学 地质学
作者
Arnold E. Sison,Sydney A. Etchieson,Fatih Güleç,Emmanuel I. Epelle,Jude A. Okolie
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:414: 137579-137579 被引量:17
标识
DOI:10.1016/j.jclepro.2023.137579
摘要

Chemical looping gasification (CLG) is a promising thermochemical process for the production of H2. CLG process is mainly based on oxygen transfer from an air reactor to a gasification reactor using solid metal oxides (also called oxygen carriers, (OC)) as oxidants. The unique oxygen separation system of CLG makes it an advanced process with a smaller carbon footprint compared to the conventional gasification process. The other advantages of CLG includes increased efficiency, reduced greenhouse gas emissions, and improved process stability compared to conventional biomass gasification. Although CLG is a promising technology, it still faces several challenges such as high capital cost, OC durability, complex reaction mechanism and scalability issues. Some of these challenges can be addressed by understanding the impact of various process conditions on H2 yield and char formation during CLG. The present study proposes a novel integrated process simulation and experimental studies to generate large dataset used for interpretable machine learning (ML) analysis. Three different ML models including support vector machine (SVM), random forest (RF), and gradient boost regression (GBR) were used to develop models for predicting the H2 and char yield during CLG. The GBR outperformed other models for the prediction of H2 and char yield during CLG with R2 value > 0.9. Among the experimental conditions, the temperature (T) and steam to biomass ratio (SBR) were the most relevant parameters affecting H2 and char production. Biomass ash, C, volatile matter (VM) and H content also influenced H2 and char formation. Overall, a combination of SHAP and partial dependence plot helped address the black box challenges of ML models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助无情的琳采纳,获得10
2秒前
13秒前
爆米花应助有梦想的咸鱼采纳,获得10
26秒前
zhangl完成签到,获得积分10
27秒前
华仔应助科研通管家采纳,获得100
31秒前
Orange应助凉宫八月采纳,获得10
32秒前
35秒前
40秒前
luo发布了新的文献求助10
41秒前
无情的琳发布了新的文献求助10
43秒前
43秒前
华仔应助w_采纳,获得10
46秒前
凉宫八月发布了新的文献求助10
47秒前
1分钟前
1分钟前
1分钟前
脑洞疼应助luo采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
maitiandehe完成签到,获得积分10
2分钟前
含糊的尔槐完成签到,获得积分10
2分钟前
归尘发布了新的文献求助30
2分钟前
彭晓雅完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
科目三应助凉宫八月采纳,获得10
2分钟前
红火完成签到 ,获得积分10
2分钟前
大模型应助无情的琳采纳,获得10
3分钟前
3分钟前
3分钟前
luo发布了新的文献求助10
3分钟前
3分钟前
3分钟前
w_发布了新的文献求助10
3分钟前
3分钟前
3分钟前
凉宫八月发布了新的文献求助10
3分钟前
szcyxzh完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724137
求助须知:如何正确求助?哪些是违规求助? 5285050
关于积分的说明 15299615
捐赠科研通 4872220
什么是DOI,文献DOI怎么找? 2616750
邀请新用户注册赠送积分活动 1566605
关于科研通互助平台的介绍 1523490