Process modelling integrated with interpretable machine learning for predicting hydrogen and char yield during chemical looping gasification

烧焦 工艺工程 生物量(生态学) 产量(工程) 化学 化学工程 热解 环境科学 工程类 热力学 物理 海洋学 地质学
作者
Arnold E. Sison,Sydney A. Etchieson,Fatih Güleç,Emmanuel I. Epelle,Jude A. Okolie
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:414: 137579-137579 被引量:9
标识
DOI:10.1016/j.jclepro.2023.137579
摘要

Chemical looping gasification (CLG) is a promising thermochemical process for the production of H2. CLG process is mainly based on oxygen transfer from an air reactor to a gasification reactor using solid metal oxides (also called oxygen carriers, (OC)) as oxidants. The unique oxygen separation system of CLG makes it an advanced process with a smaller carbon footprint compared to the conventional gasification process. The other advantages of CLG includes increased efficiency, reduced greenhouse gas emissions, and improved process stability compared to conventional biomass gasification. Although CLG is a promising technology, it still faces several challenges such as high capital cost, OC durability, complex reaction mechanism and scalability issues. Some of these challenges can be addressed by understanding the impact of various process conditions on H2 yield and char formation during CLG. The present study proposes a novel integrated process simulation and experimental studies to generate large dataset used for interpretable machine learning (ML) analysis. Three different ML models including support vector machine (SVM), random forest (RF), and gradient boost regression (GBR) were used to develop models for predicting the H2 and char yield during CLG. The GBR outperformed other models for the prediction of H2 and char yield during CLG with R2 value > 0.9. Among the experimental conditions, the temperature (T) and steam to biomass ratio (SBR) were the most relevant parameters affecting H2 and char production. Biomass ash, C, volatile matter (VM) and H content also influenced H2 and char formation. Overall, a combination of SHAP and partial dependence plot helped address the black box challenges of ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真半蕾关注了科研通微信公众号
刚刚
guoyunlong完成签到,获得积分10
1秒前
鱼鱼发布了新的文献求助10
1秒前
李爱国应助dff采纳,获得10
1秒前
萌~Lucky完成签到,获得积分10
1秒前
chuxinrou完成签到,获得积分10
1秒前
源歌发布了新的文献求助10
2秒前
2秒前
研友_LN7x6n完成签到,获得积分0
2秒前
林林子完成签到,获得积分10
2秒前
2秒前
joybee完成签到,获得积分0
2秒前
小林完成签到,获得积分10
2秒前
小毛驴完成签到,获得积分10
2秒前
3秒前
nandiaozhimu完成签到,获得积分10
3秒前
无奈若雁完成签到,获得积分10
3秒前
格局太小发布了新的文献求助10
4秒前
4秒前
帕芙芙完成签到,获得积分10
4秒前
4秒前
阳光傲菡发布了新的文献求助30
5秒前
6秒前
名茗完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
nature完成签到,获得积分10
8秒前
HuaYu完成签到,获得积分10
8秒前
时尚问安完成签到 ,获得积分10
9秒前
9秒前
Razin完成签到,获得积分10
9秒前
杨振完成签到,获得积分10
10秒前
william完成签到,获得积分10
10秒前
大大骁晓完成签到,获得积分10
10秒前
10秒前
调研昵称发布了新的文献求助10
11秒前
Xiang发布了新的文献求助10
11秒前
Mxue完成签到,获得积分10
11秒前
考拉完成签到,获得积分10
11秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3063367
求助须知:如何正确求助?哪些是违规求助? 2718227
关于积分的说明 7457962
捐赠科研通 2364609
什么是DOI,文献DOI怎么找? 1253459
科研通“疑难数据库(出版商)”最低求助积分说明 608647
版权声明 596606