已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Process modelling integrated with interpretable machine learning for predicting hydrogen and char yield during chemical looping gasification

烧焦 工艺工程 生物量(生态学) 产量(工程) 化学 化学工程 热解 环境科学 工程类 热力学 物理 海洋学 地质学
作者
Arnold E. Sison,Sydney A. Etchieson,Fatih Güleç,Emmanuel I. Epelle,Jude A. Okolie
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:414: 137579-137579 被引量:17
标识
DOI:10.1016/j.jclepro.2023.137579
摘要

Chemical looping gasification (CLG) is a promising thermochemical process for the production of H2. CLG process is mainly based on oxygen transfer from an air reactor to a gasification reactor using solid metal oxides (also called oxygen carriers, (OC)) as oxidants. The unique oxygen separation system of CLG makes it an advanced process with a smaller carbon footprint compared to the conventional gasification process. The other advantages of CLG includes increased efficiency, reduced greenhouse gas emissions, and improved process stability compared to conventional biomass gasification. Although CLG is a promising technology, it still faces several challenges such as high capital cost, OC durability, complex reaction mechanism and scalability issues. Some of these challenges can be addressed by understanding the impact of various process conditions on H2 yield and char formation during CLG. The present study proposes a novel integrated process simulation and experimental studies to generate large dataset used for interpretable machine learning (ML) analysis. Three different ML models including support vector machine (SVM), random forest (RF), and gradient boost regression (GBR) were used to develop models for predicting the H2 and char yield during CLG. The GBR outperformed other models for the prediction of H2 and char yield during CLG with R2 value > 0.9. Among the experimental conditions, the temperature (T) and steam to biomass ratio (SBR) were the most relevant parameters affecting H2 and char production. Biomass ash, C, volatile matter (VM) and H content also influenced H2 and char formation. Overall, a combination of SHAP and partial dependence plot helped address the black box challenges of ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
睁正正发布了新的文献求助10
2秒前
2秒前
3秒前
CipherSage应助王博林采纳,获得30
3秒前
Wander完成签到 ,获得积分10
3秒前
4秒前
4秒前
asd关闭了asd文献求助
5秒前
高亦凡完成签到 ,获得积分10
6秒前
思源应助peter采纳,获得10
7秒前
坚定背包发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
番茄酱发布了新的文献求助10
9秒前
aiine完成签到,获得积分10
10秒前
yyc完成签到,获得积分10
10秒前
英姑应助王东采纳,获得10
11秒前
Shanglinqin完成签到,获得积分10
11秒前
科研通AI6应助yinch采纳,获得20
13秒前
小萌兽发布了新的文献求助10
13秒前
13秒前
Ronnie完成签到 ,获得积分10
16秒前
丫丫完成签到 ,获得积分10
16秒前
ZJX应助小邓采纳,获得10
18秒前
老头大学习完成签到 ,获得积分10
18秒前
19秒前
祖尔风发布了新的文献求助10
19秒前
19秒前
失眠傲芙完成签到,获得积分10
21秒前
Jally完成签到 ,获得积分10
21秒前
22秒前
23秒前
默幻弦完成签到,获得积分10
24秒前
CCsouljump完成签到 ,获得积分10
26秒前
典雅的黑猫完成签到,获得积分10
26秒前
王东发布了新的文献求助10
26秒前
cmxing完成签到 ,获得积分10
26秒前
祖尔风完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339