Process modelling integrated with interpretable machine learning for predicting hydrogen and char yield during chemical looping gasification

烧焦 工艺工程 生物量(生态学) 产量(工程) 化学 化学工程 热解 环境科学 工程类 热力学 物理 海洋学 地质学
作者
Arnold E. Sison,Sydney A. Etchieson,Fatih Güleç,Emmanuel I. Epelle,Jude A. Okolie
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:414: 137579-137579 被引量:17
标识
DOI:10.1016/j.jclepro.2023.137579
摘要

Chemical looping gasification (CLG) is a promising thermochemical process for the production of H2. CLG process is mainly based on oxygen transfer from an air reactor to a gasification reactor using solid metal oxides (also called oxygen carriers, (OC)) as oxidants. The unique oxygen separation system of CLG makes it an advanced process with a smaller carbon footprint compared to the conventional gasification process. The other advantages of CLG includes increased efficiency, reduced greenhouse gas emissions, and improved process stability compared to conventional biomass gasification. Although CLG is a promising technology, it still faces several challenges such as high capital cost, OC durability, complex reaction mechanism and scalability issues. Some of these challenges can be addressed by understanding the impact of various process conditions on H2 yield and char formation during CLG. The present study proposes a novel integrated process simulation and experimental studies to generate large dataset used for interpretable machine learning (ML) analysis. Three different ML models including support vector machine (SVM), random forest (RF), and gradient boost regression (GBR) were used to develop models for predicting the H2 and char yield during CLG. The GBR outperformed other models for the prediction of H2 and char yield during CLG with R2 value > 0.9. Among the experimental conditions, the temperature (T) and steam to biomass ratio (SBR) were the most relevant parameters affecting H2 and char production. Biomass ash, C, volatile matter (VM) and H content also influenced H2 and char formation. Overall, a combination of SHAP and partial dependence plot helped address the black box challenges of ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮的冰菱完成签到,获得积分10
1秒前
深情安青应助LIU采纳,获得10
1秒前
ZWK发布了新的文献求助10
1秒前
2秒前
孤独的一鸣应助王王的苏采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
SYLH应助机智的涑采纳,获得10
3秒前
3秒前
Orange应助英俊鼠标采纳,获得10
4秒前
11完成签到,获得积分10
4秒前
4秒前
cc完成签到,获得积分10
4秒前
5秒前
阿阿阿阿冀完成签到,获得积分20
5秒前
爱听歌的峻熙完成签到,获得积分10
5秒前
SciGPT应助彪壮的机器猫采纳,获得10
6秒前
1021完成签到,获得积分10
6秒前
betty2009发布了新的文献求助10
7秒前
kk发布了新的文献求助10
7秒前
磊磊猪完成签到,获得积分10
7秒前
kxdxng完成签到 ,获得积分10
7秒前
苯妥英俊完成签到,获得积分10
7秒前
汤汤杨杨完成签到,获得积分10
7秒前
rrfhl发布了新的文献求助10
7秒前
8秒前
11发布了新的文献求助10
8秒前
8秒前
blacksmith0发布了新的文献求助10
9秒前
9秒前
润之发布了新的文献求助10
9秒前
hhh112完成签到,获得积分20
10秒前
somin应助轻风采纳,获得10
11秒前
11秒前
天天快乐应助wanting采纳,获得10
12秒前
orixero应助王小冉采纳,获得10
12秒前
姜忆霜完成签到 ,获得积分10
12秒前
x971017完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953933
求助须知:如何正确求助?哪些是违规求助? 3499947
关于积分的说明 11097597
捐赠科研通 3230435
什么是DOI,文献DOI怎么找? 1785944
邀请新用户注册赠送积分活动 869717
科研通“疑难数据库(出版商)”最低求助积分说明 801572