Linear Lamb Wave Based Technique for Damage Detection in stiffened composite plate using Machine learning

分层(地质) 兰姆波 复合数 卷积神经网络 反对称关系 信号(编程语言) 有限元法 计算机科学 复合板 材料科学 结构工程 复合材料 算法 声学 人工智能 工程类 数学 表面波 物理 地质学 古生物学 电信 俯冲 数学物理 构造学 程序设计语言
作者
Sachin Kumar,Vaibhav Mishra,Mohammed Rabius Sunny
出处
期刊:15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference
标识
DOI:10.2514/6.2023-3111
摘要

For real time damage detection in composite structure, data driven machine learning (ML) algorithms are more preferred as it provides better decision making from the acquired sensor data. Implementing lamb wave propagation data obtained from complex structures with ML algorithms can be more effective to extract damage-related features. Convolutional Neural Network (CNN) has the ability to discover abstract features which can classify damage zones and damages between the plies of the composite. In this paper CNN algorithm is performed on response voltage signal data obtained from the sensor through Finite Element simulation in ABAQUS in order to classify delamination zones in complex composites structure having two stiffeners. The antisymmetric and symmetric components of the damage signal were pre-processed by subtracting from the undamaged signal, followed by the Hilbert transform, to feed the network as an input and to enhance the performance of the CNN model. For training, diverse database were created by varying delamination length and changing the delamination positions between the layers of the composite plies. Based on the above study, obtained results show high accuracy and can indeed detect delamination in composites structures with stiffeners using guided lamb wave technique in realistic situations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CarryYi发布了新的文献求助10
刚刚
壮壮不爱吃肉完成签到,获得积分10
刚刚
汉堡包应助鲜榨白开水采纳,获得10
刚刚
你好CDY完成签到,获得积分10
刚刚
刚刚
郭嘉仪发布了新的文献求助10
刚刚
一个奎发布了新的文献求助10
1秒前
勤奋乐天完成签到,获得积分10
1秒前
ding应助Xin采纳,获得10
1秒前
安然完成签到,获得积分10
2秒前
开放依琴完成签到,获得积分10
2秒前
Akim应助mengtian采纳,获得10
3秒前
搜集达人应助小欣采纳,获得10
3秒前
栉风沐雨发布了新的文献求助10
3秒前
4秒前
Jason完成签到,获得积分20
4秒前
4秒前
隐形曼青应助要减肥小小采纳,获得10
4秒前
浮游应助tz采纳,获得10
4秒前
安然发布了新的文献求助10
4秒前
123驳回了star应助
4秒前
5秒前
5秒前
6秒前
6秒前
6秒前
槐安发布了新的文献求助10
7秒前
7秒前
7秒前
小洋发布了新的文献求助10
7秒前
芝麻球ii发布了新的文献求助10
7秒前
ii完成签到,获得积分10
8秒前
完美世界应助yxl采纳,获得10
8秒前
8秒前
Truman发布了新的文献求助10
9秒前
Levin发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545644
求助须知:如何正确求助?哪些是违规求助? 4631652
关于积分的说明 14621627
捐赠科研通 4573276
什么是DOI,文献DOI怎么找? 2507440
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455451