Prediction of Sites of Metabolism of CYP3A4 Substrates Utilizing Docking-Derived Geometric Features

对接(动物) CYP3A4型 计算生物学 药物发现 计算机科学 细胞色素P450 化学 生物系统 新陈代谢 生物 生物化学 医学 护理部
作者
Yanjun Feng,Changda Gong,Jieyu Zhu,Guixia Liu,Yun Tang,Weihua Li
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (13): 4158-4169 被引量:5
标识
DOI:10.1021/acs.jcim.3c00549
摘要

Cytochrome P450 3A4 (CYP3A4) is one of the major drug-metabolizing enzymes in the human body and is responsible for the metabolism of ∼50% of clinically used drugs. Therefore, the identification of the compound's sites of metabolism (SOMs) mediated by CYP3A4 is of utmost importance in the early stage of drug discovery and development. Herein, docking-based approaches incorporating geometric features were used for SOMs prediction of CYP3A4 substrates. The cross-docking poses of a relatively large data set containing 474 substrates were analyzed in depth, and a widely observed geometric pattern called the close proximity of SOMs was derived from the poses. On the basis of the close proximity, several structure-based models have been constructed, which demonstrated better performance than those structure-based models using the criterion of Fe-SOM distance. For further improving the prediction performance, the structure-based models were also combined with the well-known ligand-based model SMARTCyp. One combined model exhibited good performance on the SOMs prediction of an external substrate set containing kinase inhibitors, PROTACs, approved drugs, and some lead compounds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jindou完成签到,获得积分10
刚刚
852应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
CipherSage应助抹茶二锅头采纳,获得10
刚刚
刚刚
慕青应助科研通管家采纳,获得10
刚刚
刚刚
丘比特应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
PengHu完成签到,获得积分10
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
英姑应助还单身的竺采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
蓝天应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729788
求助须知:如何正确求助?哪些是违规求助? 5320464
关于积分的说明 15317483
捐赠科研通 4876685
什么是DOI,文献DOI怎么找? 2619529
邀请新用户注册赠送积分活动 1569012
关于科研通互助平台的介绍 1525605