Prediction of brown tide algae using improved Gramian angular field and deep learning based on laser-induced fluorescence spectrum

人工智能 计算机科学 卷积神经网络 均方误差 模式识别(心理学) 生物系统 数学 统计 生物
作者
Yu Si,Dandan Zhu,Ying Chen,Junfei Liu,Ting Chen,Zhiyang Dong
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (9): 095501-095501 被引量:1
标识
DOI:10.1088/1361-6501/acd8e2
摘要

Abstract The frequent occurrence of algal blooms has seriously affected the marine environment and human production activities. Therefore, it is crucial to monitor the phytoplankton concentration in water bodies. In this study, a prediction method for brown tide algae using improved Gramian angular field (IGAF) and deep learning based on the laser-induced fluorescence spectrum was proposed. The method combined one-dimensional (1D) fluorescence spectrum with IGAF for image coding. The internal normalizing approach of the original Gramian angle field algorithm was upgraded from local to global, which can increase the difference between samples with various concentrations. Then, we established a novel technique that fully takes into account the Gramian angular difference field and Gramian angular summation field features, allowing it to control the main and sub-diagonal features and successfully convert 1D sequences into images by adding various weight factors. Using depthwise separable convolutional neural network to extract image features helps reduce model training parameters, paired with long short-term memory network to rapidly predict the concentration of brown tide. To confirm the actual performance of the given approach, ablation and contrast experiments were carried out, and the results showed that the method’s regression accuracy, R 2 was 97.8%, with the lowest mean square error and mean absolute error. This study investigated the transformation of 1D spectra into images using IGAF, which not only explored the application of the fluorescence spectrum image coding method for algal regression but also enabled the introduction of the potent benefits of deep learning image processing into the field of spectral analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暗中讨饭完成签到,获得积分10
刚刚
唐新新发布了新的文献求助10
刚刚
小周周完成签到,获得积分10
刚刚
刚刚
berg发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
2秒前
小轩完成签到,获得积分10
3秒前
5秒前
您好完成签到,获得积分20
5秒前
6秒前
夏日发布了新的文献求助30
6秒前
闪电小子发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
无花果应助唐新新采纳,获得10
8秒前
8秒前
9秒前
安徒完成签到,获得积分10
9秒前
10秒前
飞雪含笑发布了新的文献求助10
10秒前
Zhang完成签到,获得积分10
12秒前
LiXiaomeng发布了新的文献求助10
12秒前
13秒前
123发布了新的文献求助10
13秒前
13秒前
搜集达人应助李狗蛋采纳,获得10
14秒前
14秒前
闪电小子完成签到,获得积分10
15秒前
15秒前
15秒前
Felix完成签到,获得积分10
17秒前
小青椒应助mdd采纳,获得30
17秒前
tao1225完成签到,获得积分10
17秒前
17秒前
18秒前
aaaaa发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991412
求助须知:如何正确求助?哪些是违规求助? 4239905
关于积分的说明 13208671
捐赠科研通 4034805
什么是DOI,文献DOI怎么找? 2207529
邀请新用户注册赠送积分活动 1218522
关于科研通互助平台的介绍 1136959