Prediction of brown tide algae using improved Gramian angular field and deep learning based on laser-induced fluorescence spectrum

人工智能 计算机科学 卷积神经网络 均方误差 模式识别(心理学) 生物系统 数学 统计 生物
作者
Yu Si,Dandan Zhu,Ying Chen,Junfei Liu,Ting Chen,Zhiyang Dong
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (9): 095501-095501 被引量:1
标识
DOI:10.1088/1361-6501/acd8e2
摘要

Abstract The frequent occurrence of algal blooms has seriously affected the marine environment and human production activities. Therefore, it is crucial to monitor the phytoplankton concentration in water bodies. In this study, a prediction method for brown tide algae using improved Gramian angular field (IGAF) and deep learning based on the laser-induced fluorescence spectrum was proposed. The method combined one-dimensional (1D) fluorescence spectrum with IGAF for image coding. The internal normalizing approach of the original Gramian angle field algorithm was upgraded from local to global, which can increase the difference between samples with various concentrations. Then, we established a novel technique that fully takes into account the Gramian angular difference field and Gramian angular summation field features, allowing it to control the main and sub-diagonal features and successfully convert 1D sequences into images by adding various weight factors. Using depthwise separable convolutional neural network to extract image features helps reduce model training parameters, paired with long short-term memory network to rapidly predict the concentration of brown tide. To confirm the actual performance of the given approach, ablation and contrast experiments were carried out, and the results showed that the method’s regression accuracy, R 2 was 97.8%, with the lowest mean square error and mean absolute error. This study investigated the transformation of 1D spectra into images using IGAF, which not only explored the application of the fluorescence spectrum image coding method for algal regression but also enabled the introduction of the potent benefits of deep learning image processing into the field of spectral analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
乌兰巴托没有海完成签到,获得积分10
1秒前
Coral369发布了新的文献求助10
2秒前
3秒前
Gao发布了新的文献求助10
3秒前
黄维完成签到,获得积分10
4秒前
4秒前
4秒前
帅气天荷完成签到 ,获得积分10
4秒前
5秒前
dqz完成签到,获得积分10
5秒前
5秒前
一一完成签到,获得积分10
6秒前
6秒前
雨水发布了新的文献求助10
6秒前
Aspirin发布了新的文献求助10
6秒前
7秒前
补喵完成签到,获得积分10
8秒前
winky发布了新的文献求助10
8秒前
aaa完成签到 ,获得积分10
9秒前
科研通AI2S应助booooo采纳,获得10
9秒前
9秒前
kylin发布了新的文献求助10
9秒前
kk123完成签到,获得积分10
9秒前
10秒前
科研吗喽发布了新的文献求助10
10秒前
yoyo发布了新的文献求助10
10秒前
伍子丐的猫完成签到,获得积分10
11秒前
11秒前
甲乙丙丁完成签到 ,获得积分10
13秒前
14秒前
gyyzj完成签到 ,获得积分10
14秒前
14秒前
深情安青应助认真学习采纳,获得10
14秒前
asdfqwer应助知不道采纳,获得10
15秒前
留胡子的函完成签到,获得积分10
15秒前
烟花应助瓦力文采纳,获得10
17秒前
雪白代萱完成签到,获得积分10
17秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570