Prediction of brown tide algae using improved Gramian angular field and deep learning based on laser-induced fluorescence spectrum

人工智能 计算机科学 卷积神经网络 均方误差 模式识别(心理学) 生物系统 数学 统计 生物
作者
Yu Si,Dandan Zhu,Ying Chen,Junfei Liu,Ting Chen,Zhiyang Dong
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (9): 095501-095501 被引量:1
标识
DOI:10.1088/1361-6501/acd8e2
摘要

Abstract The frequent occurrence of algal blooms has seriously affected the marine environment and human production activities. Therefore, it is crucial to monitor the phytoplankton concentration in water bodies. In this study, a prediction method for brown tide algae using improved Gramian angular field (IGAF) and deep learning based on the laser-induced fluorescence spectrum was proposed. The method combined one-dimensional (1D) fluorescence spectrum with IGAF for image coding. The internal normalizing approach of the original Gramian angle field algorithm was upgraded from local to global, which can increase the difference between samples with various concentrations. Then, we established a novel technique that fully takes into account the Gramian angular difference field and Gramian angular summation field features, allowing it to control the main and sub-diagonal features and successfully convert 1D sequences into images by adding various weight factors. Using depthwise separable convolutional neural network to extract image features helps reduce model training parameters, paired with long short-term memory network to rapidly predict the concentration of brown tide. To confirm the actual performance of the given approach, ablation and contrast experiments were carried out, and the results showed that the method’s regression accuracy, R 2 was 97.8%, with the lowest mean square error and mean absolute error. This study investigated the transformation of 1D spectra into images using IGAF, which not only explored the application of the fluorescence spectrum image coding method for algal regression but also enabled the introduction of the potent benefits of deep learning image processing into the field of spectral analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZXH发布了新的文献求助10
刚刚
阳光发布了新的文献求助10
1秒前
1111发布了新的文献求助10
1秒前
2秒前
DDd完成签到 ,获得积分10
2秒前
1351567822应助乌拉拉啦啦啦采纳,获得10
3秒前
4秒前
风逝发布了新的文献求助10
4秒前
4秒前
小蘑菇应助老迟到的雪曼采纳,获得10
5秒前
6秒前
6秒前
完美世界应助Wayne采纳,获得10
8秒前
genuine发布了新的文献求助10
9秒前
嘿嘿嘿发布了新的文献求助10
9秒前
科研农民工完成签到,获得积分10
10秒前
玛卡巴卡发布了新的文献求助30
11秒前
有魅力的电脑完成签到,获得积分10
11秒前
顾矜应助egg采纳,获得10
11秒前
12秒前
所所应助沐晴采纳,获得10
12秒前
loski发布了新的文献求助10
13秒前
慕青应助故晨采纳,获得10
13秒前
汉堡包应助那咋了采纳,获得10
14秒前
14秒前
15秒前
果果瑞宁发布了新的文献求助10
16秒前
16秒前
坦率的匪应助科研通管家采纳,获得10
16秒前
16秒前
bkagyin应助科研通管家采纳,获得50
16秒前
16秒前
March应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
17秒前
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531197
关于积分的说明 11252739
捐赠科研通 3269830
什么是DOI,文献DOI怎么找? 1804815
邀请新用户注册赠送积分活动 881915
科研通“疑难数据库(出版商)”最低求助积分说明 809028