Prediction of brown tide algae using improved Gramian angular field and deep learning based on laser-induced fluorescence spectrum

人工智能 计算机科学 卷积神经网络 均方误差 模式识别(心理学) 生物系统 数学 统计 生物
作者
Yu Si,Dandan Zhu,Ying Chen,Junfei Liu,Ting Chen,Zhiyang Dong
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (9): 095501-095501 被引量:1
标识
DOI:10.1088/1361-6501/acd8e2
摘要

Abstract The frequent occurrence of algal blooms has seriously affected the marine environment and human production activities. Therefore, it is crucial to monitor the phytoplankton concentration in water bodies. In this study, a prediction method for brown tide algae using improved Gramian angular field (IGAF) and deep learning based on the laser-induced fluorescence spectrum was proposed. The method combined one-dimensional (1D) fluorescence spectrum with IGAF for image coding. The internal normalizing approach of the original Gramian angle field algorithm was upgraded from local to global, which can increase the difference between samples with various concentrations. Then, we established a novel technique that fully takes into account the Gramian angular difference field and Gramian angular summation field features, allowing it to control the main and sub-diagonal features and successfully convert 1D sequences into images by adding various weight factors. Using depthwise separable convolutional neural network to extract image features helps reduce model training parameters, paired with long short-term memory network to rapidly predict the concentration of brown tide. To confirm the actual performance of the given approach, ablation and contrast experiments were carried out, and the results showed that the method’s regression accuracy, R 2 was 97.8%, with the lowest mean square error and mean absolute error. This study investigated the transformation of 1D spectra into images using IGAF, which not only explored the application of the fluorescence spectrum image coding method for algal regression but also enabled the introduction of the potent benefits of deep learning image processing into the field of spectral analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的一手完成签到 ,获得积分10
1秒前
晫猗发布了新的文献求助20
1秒前
科研通AI6应助小马采纳,获得10
1秒前
bbbuc发布了新的文献求助10
2秒前
正宗大肥鳖完成签到,获得积分20
2秒前
3秒前
3秒前
cqsuper完成签到,获得积分10
3秒前
搜集达人应助shxygpz采纳,获得10
3秒前
万能图书馆应助WQQ采纳,获得10
6秒前
7秒前
7秒前
8秒前
8秒前
殷润琳发布了新的文献求助10
9秒前
琳琳完成签到,获得积分20
9秒前
李捏完成签到,获得积分20
10秒前
鹏虫虫发布了新的文献求助10
11秒前
英俊的铭应助六尺巷采纳,获得10
12秒前
不吃橘子发布了新的文献求助10
12秒前
琳琳发布了新的文献求助10
13秒前
sqq发布了新的文献求助10
13秒前
我是老大应助涨涨涨采纳,获得10
14秒前
随便完成签到 ,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
深情安青应助limbooo采纳,获得10
17秒前
bkagyin应助看看看采纳,获得10
18秒前
19秒前
19秒前
19秒前
逐梦科研圈完成签到 ,获得积分10
20秒前
21秒前
小马完成签到,获得积分10
21秒前
爱搬玉米发布了新的文献求助10
21秒前
文艺的立果完成签到,获得积分10
21秒前
Owen应助不再是纳米的正肽采纳,获得10
22秒前
22秒前
思源应助EMMA采纳,获得10
22秒前
福斯卡发布了新的文献求助30
22秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443045
求助须知:如何正确求助?哪些是违规求助? 4553014
关于积分的说明 14240267
捐赠科研通 4474566
什么是DOI,文献DOI怎么找? 2452011
邀请新用户注册赠送积分活动 1442958
关于科研通互助平台的介绍 1418682