Prediction of brown tide algae using improved Gramian angular field and deep learning based on laser-induced fluorescence spectrum

人工智能 计算机科学 卷积神经网络 均方误差 模式识别(心理学) 生物系统 数学 统计 生物
作者
Yu Si,Dandan Zhu,Ying Chen,Junfei Liu,Ting Chen,Zhiyang Dong
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (9): 095501-095501 被引量:1
标识
DOI:10.1088/1361-6501/acd8e2
摘要

Abstract The frequent occurrence of algal blooms has seriously affected the marine environment and human production activities. Therefore, it is crucial to monitor the phytoplankton concentration in water bodies. In this study, a prediction method for brown tide algae using improved Gramian angular field (IGAF) and deep learning based on the laser-induced fluorescence spectrum was proposed. The method combined one-dimensional (1D) fluorescence spectrum with IGAF for image coding. The internal normalizing approach of the original Gramian angle field algorithm was upgraded from local to global, which can increase the difference between samples with various concentrations. Then, we established a novel technique that fully takes into account the Gramian angular difference field and Gramian angular summation field features, allowing it to control the main and sub-diagonal features and successfully convert 1D sequences into images by adding various weight factors. Using depthwise separable convolutional neural network to extract image features helps reduce model training parameters, paired with long short-term memory network to rapidly predict the concentration of brown tide. To confirm the actual performance of the given approach, ablation and contrast experiments were carried out, and the results showed that the method’s regression accuracy, R 2 was 97.8%, with the lowest mean square error and mean absolute error. This study investigated the transformation of 1D spectra into images using IGAF, which not only explored the application of the fluorescence spectrum image coding method for algal regression but also enabled the introduction of the potent benefits of deep learning image processing into the field of spectral analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椰丝yes发布了新的文献求助10
刚刚
1秒前
z掌握一下完成签到,获得积分10
1秒前
likke发布了新的文献求助10
2秒前
阳光怀亦完成签到,获得积分10
2秒前
迷路小丸子完成签到,获得积分10
2秒前
peng发布了新的文献求助10
3秒前
小马甲应助YR采纳,获得10
3秒前
z掌握一下发布了新的文献求助10
4秒前
失眠柚子完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
岩下松风完成签到,获得积分10
6秒前
7秒前
时光不旧只是满尘灰完成签到 ,获得积分10
8秒前
Hello应助peng采纳,获得10
9秒前
9秒前
椰丝yes完成签到,获得积分10
9秒前
鱼囧发布了新的文献求助10
9秒前
哆啦十七应助value采纳,获得10
9秒前
10秒前
风181013发布了新的文献求助10
11秒前
热心语山发布了新的文献求助10
14秒前
学术小白发布了新的文献求助30
14秒前
没有答案发布了新的文献求助10
15秒前
16秒前
隐形曼青应助玲也采纳,获得10
16秒前
16秒前
华仔应助kk采纳,获得10
16秒前
16秒前
杨拿铁完成签到,获得积分10
17秒前
李李李关注了科研通微信公众号
20秒前
JamesPei应助CL采纳,获得10
20秒前
jackmilton发布了新的文献求助10
21秒前
22秒前
研友_rLmNXn发布了新的文献求助10
22秒前
22秒前
24秒前
yyy发布了新的文献求助10
24秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342724
求助须知:如何正确求助?哪些是违规求助? 4478521
关于积分的说明 13939809
捐赠科研通 4375215
什么是DOI,文献DOI怎么找? 2404022
邀请新用户注册赠送积分活动 1396569
关于科研通互助平台的介绍 1368794