已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Proteomics and transcriptomics explore the effect of mixture of herbal extract on diabetic wound healing process

医学 截肢 糖尿病 糖尿病足 清创术(牙科) 重症监护医学 人口 入射(几何) 糖尿病足溃疡 抗生素 伤口护理 外科 内科学 环境卫生 内分泌学 物理 光学 微生物学 生物
作者
Yang Liu,Xi Zhang,Liping Yang,Shuai Zhou,Yuewei Li,Yiyu Shen,Shengli Lu,Jianda Zhou,Yu Liu
出处
期刊:Phytomedicine [Elsevier]
卷期号:116: 154892-154892 被引量:11
标识
DOI:10.1016/j.phymed.2023.154892
摘要

The annual incidence of diabetic foot ulcers (DFUs) has been reported to vary from 0.2% to 11% in diabetes-specific clinical settings and less than 0.1% to 8% in community- and population-based cohorts. According to the International Diabetes Foundation, approximately 40 million to 60 million people worldwide are affected by DFUs, and a recent meta-analysis indicates a global prevalence of 6.3% among adults with diabetes, or about 33 million individuals. The cost of diabetes care is significant, amounting to $273 billion in direct and $90 billion in indirect expenses annually, in America. Foot complications in diabetes care excess annual expenditures ranging from 50% to 200% above the baseline cost of diabetes-related care. The cost of advanced-stage ulcers can be more than $50,000 per wound episode, and the direct expenses of major amputation are even higher. DFUs can be treated using various methods, including wound dressings, antibiotics, pressure-off loading, skin substitutes, stem cells, debridement, topical oxygen therapy, gene therapy and growth factors. For severe DFUs patients are at risk of amputation if treatment is not timely or appropriate. Amputating limbs not only causes physical pain to patients, but also brings economic burden due to lost productivity, and decreased employment linked to DFUs. Currently, long-term use of local antibiotics in clinical practice is prone to induce drug resistance, while growth factors do not effectively inhibit bacterial growth and control inflammation in wounds. Stem cell and gene therapies are still in the experimental stage. The method of local debridement combined with negative pressure therapy is expensive. Therefore, we urgently need an affordable, non-surgical method to treat diabetic ulcers. Extracts of bark of Bauhinia purpurea, Paeoniae rubrae, Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. (Hoffm.) Benth. & Hook.f. ex Franch. & Sav., Acorus calamus L, and Radix Angelicae biseratae have been used as traditional remedies to treat inflammation-related diseases and cutaneous wounds due to their anti-inflammatory properties and their ability to promote vascular renewal. However, there have been few studies on the mixture of these five herbal extracts on diabetic wound healing.This study was designed to assess the healing effect of a mixture of five aforementioned herbal extracts on diabetic ulcer wounds in rats, and to reveal the potential mechanisms behind any potential wound healing using transcriptomics and proteomics.We designed the experiment to explore the effects of five herbal extracts on diabetic wound healing process through in vivo experiments and to investigate the underlying mechanisms through proteomics and transcriptomics.We used a mixture of five aforementioned herbal extract to treat rat model of diabetic established by intraperitoneal injection of streptozotocin, and a 2 × 2 cm round full-thickness skin defect was created on the back of the rat. Staphylococcus aureus (1 ml of 1.5 × 109 cfu/ml) was evenly applied to the wound. The wound was then observed for 72 h. The infected ulcer model of diabetic rats was considered to be successfully established if the wound was found to be infected with S. aureus. According to different medications, the rats were divided into three groups, namely mixture of herbal extract (MHE), Kangfuxin solution (KFS) and control (Ctrl). The effects of the medicine on wound healing were observed. HE staining and Masson staining were performed to evaluate the histopathological changes and collagen synthesis. IHC staining was used to assess the neovascularization, and M2 macrophage proliferation was determined by immunofluorescence staining. Proteomic and transcriptomic studies were performed to explore potential mechanism of five herbal extracts to promote wound healing. UHPLC-QE-MS was performed to identify the chemical composition of mixture of herbal extract.The study show that the mixed herbal extract promotes angiogenesis, proliferation of M2 macrophages, and collagen synthesis. Transcriptomics showed that rno-miR-1298, rno-miR-144-5p, and rno-miR-92a-1-5p are vital miRNAs which also play a significant role in role in regulating wound healing. Proteomics results showed that the following proteins were important in wounds treated with MHE: Rack1, LOC100362366, Cops2, Cops6, Eif4e, Eif3c, Rpl12, Srp54, Rpl13 and Lsm7. Autophagy, PI3-Akt and mTOR signaling pathways were enriched after treatment with MHE compared to other groups.Herein, we have shown that MHE containing extracts of bark of Bauhinia purpurea, P. rubrae, A. dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav., A. calamus L, and R. A. biseratae has significant wound healing effects in the diabetic ulcer wound rat model. These results suggest that local application of MHE in diabetic wounds can accelerate the wound healing process. Moreover, in vivo experiments revealed that the diabetic wound healing process was primarily mediated by angiogenesis and M2 macrophage transition. Therefore, this study may provide a promising and non-surgical therapeutic strategy to accelerate diabetic wound healing, thereby decreasing the number of limb amputations in diabetic patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zsmj23完成签到 ,获得积分0
3秒前
Owen应助luxihu采纳,获得10
5秒前
fpbovo发布了新的文献求助10
5秒前
皮咻完成签到 ,获得积分10
11秒前
fpbovo完成签到,获得积分10
13秒前
自由冰凡完成签到 ,获得积分10
18秒前
19秒前
文献搬运工完成签到 ,获得积分10
21秒前
听闻墨笙完成签到 ,获得积分10
22秒前
传奇3应助萍萍无奇采纳,获得10
23秒前
24秒前
希望天下0贩的0应助照照采纳,获得10
28秒前
Orange应助129753采纳,获得30
35秒前
梧wu发布了新的文献求助10
41秒前
快乐凡关注了科研通微信公众号
48秒前
梧wu完成签到,获得积分20
50秒前
JY应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
科研通AI2S应助梧wu采纳,获得10
54秒前
FashionBoy应助科研通管家采纳,获得10
54秒前
和谐的果汁完成签到 ,获得积分10
57秒前
nk完成签到 ,获得积分10
59秒前
远山完成签到 ,获得积分10
1分钟前
jiangchuansm完成签到,获得积分10
1分钟前
灰鸽舞完成签到 ,获得积分10
1分钟前
曾经不言完成签到 ,获得积分10
1分钟前
独特的友琴完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助王小西采纳,获得10
1分钟前
Hazellee完成签到 ,获得积分10
1分钟前
吱吱草莓派完成签到 ,获得积分10
1分钟前
Dannnn完成签到 ,获得积分10
1分钟前
1分钟前
英勇的汉堡完成签到,获得积分20
1分钟前
酌鹿给酌鹿的求助进行了留言
1分钟前
1分钟前
今后应助zhangxr采纳,获得10
1分钟前
柠檬完成签到,获得积分10
1分钟前
zhangxr完成签到,获得积分10
1分钟前
王小西发布了新的文献求助10
1分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139464
求助须知:如何正确求助?哪些是违规求助? 2790346
关于积分的说明 7795029
捐赠科研通 2446818
什么是DOI,文献DOI怎么找? 1301411
科研通“疑难数据库(出版商)”最低求助积分说明 626219
版权声明 601141