Deep learning model with L1 penalty for predicting breast cancer metastasis using gene expression data

过度拟合 乳腺癌 深度学习 随机森林 人工智能 计算机科学 转移 逻辑回归 机器学习 支持向量机 分类器(UML) 交叉验证 人工神经网络 肿瘤科 癌症 医学 内科学
作者
J.-Y. Kim,Minhyeok Lee,Junhee Seok
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:4 (2): 025026-025026 被引量:4
标识
DOI:10.1088/2632-2153/acd987
摘要

Abstract Breast cancer has the highest incidence and death rate among women; moreover, its metastasis to other organs increases the mortality rate. Since several studies have reported gene expression and cancer prognosis to be related, the study of breast cancer metastasis using gene expression is crucial. To this end, a novel deep neural network architecture, deep learning-based cancer metastasis estimator (DeepCME), is proposed in this paper for predicting breast cancer metastasis. However, the problem of overfitting occurs frequently while training deep learning models using gene expression data because they contain a large number of genes and the sample size is rather small. To address overfitting, several regularization methods are implemented, such as L1 penalty, batch normalization, and dropout. To demonstrate the superior performance of our model, area under curve (AUC) scores are evaluated and then compared with five baseline models: logistic regression, support vector classifier (SVC), random forest, decision tree, and k -nearest neighbor. Considering results, DeepCME demonstrates the highest average AUC scores in most cross-validation cases, and the average AUC score of DeepCME is 0.754, which is approximately 12.9% higher than SVC, the second-best model. In addition, the 30 most significant genes related to breast cancer metastasis are identified based on DeepCME results and some are discussed in further detail considering the reports from some previous medical studies. Considering the high expense involved in measuring the expression of a single gene, the ability to develop the cost-effective and time-efficient tests using only a few key genes is valuable. Based on this study, we expect DeepCME to be utilized clinically for predicting breast cancer metastasis and be applied to other types of cancer as well after further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助淡淡夕阳采纳,获得10
3秒前
4秒前
linlin完成签到,获得积分10
4秒前
4秒前
稳重的小霸王完成签到,获得积分10
5秒前
ling完成签到,获得积分10
5秒前
glany发布了新的文献求助30
6秒前
6秒前
6秒前
zz完成签到 ,获得积分10
6秒前
yznfly应助机灵的颜演采纳,获得30
7秒前
ding应助bububusbu采纳,获得10
7秒前
圆圆的波仔完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
shisui应助甜甜芾采纳,获得30
10秒前
littlechu发布了新的文献求助30
10秒前
dian完成签到 ,获得积分10
11秒前
linlin发布了新的文献求助10
12秒前
科研鸟发布了新的文献求助10
12秒前
lin完成签到,获得积分10
13秒前
雾海完成签到,获得积分10
14秒前
14秒前
小二郎应助燕子采纳,获得30
15秒前
15秒前
粽子发布了新的文献求助10
15秒前
雨晴完成签到,获得积分10
16秒前
在水一方应助唠嗑在呐采纳,获得10
16秒前
16秒前
17秒前
科研通AI5应助忐忑的平凡采纳,获得10
17秒前
怕黑君浩完成签到 ,获得积分10
18秒前
佳佳应助weiwei采纳,获得10
18秒前
郭伯威发布了新的文献求助20
18秒前
情怀应助TORGO采纳,获得10
18秒前
18秒前
19秒前
大模型应助rslysywd采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403