已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning model with L1 penalty for predicting breast cancer metastasis using gene expression data

过度拟合 乳腺癌 深度学习 随机森林 人工智能 计算机科学 转移 逻辑回归 机器学习 支持向量机 分类器(UML) 交叉验证 人工神经网络 肿瘤科 癌症 医学 内科学
作者
J.-Y. Kim,Minhyeok Lee,Junhee Seok
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:4 (2): 025026-025026 被引量:4
标识
DOI:10.1088/2632-2153/acd987
摘要

Abstract Breast cancer has the highest incidence and death rate among women; moreover, its metastasis to other organs increases the mortality rate. Since several studies have reported gene expression and cancer prognosis to be related, the study of breast cancer metastasis using gene expression is crucial. To this end, a novel deep neural network architecture, deep learning-based cancer metastasis estimator (DeepCME), is proposed in this paper for predicting breast cancer metastasis. However, the problem of overfitting occurs frequently while training deep learning models using gene expression data because they contain a large number of genes and the sample size is rather small. To address overfitting, several regularization methods are implemented, such as L1 penalty, batch normalization, and dropout. To demonstrate the superior performance of our model, area under curve (AUC) scores are evaluated and then compared with five baseline models: logistic regression, support vector classifier (SVC), random forest, decision tree, and k -nearest neighbor. Considering results, DeepCME demonstrates the highest average AUC scores in most cross-validation cases, and the average AUC score of DeepCME is 0.754, which is approximately 12.9% higher than SVC, the second-best model. In addition, the 30 most significant genes related to breast cancer metastasis are identified based on DeepCME results and some are discussed in further detail considering the reports from some previous medical studies. Considering the high expense involved in measuring the expression of a single gene, the ability to develop the cost-effective and time-efficient tests using only a few key genes is valuable. Based on this study, we expect DeepCME to be utilized clinically for predicting breast cancer metastasis and be applied to other types of cancer as well after further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧皇发布了新的文献求助50
刚刚
Lucas应助哆啦小奶龙采纳,获得10
1秒前
boldhammer完成签到 ,获得积分10
1秒前
漓一完成签到 ,获得积分10
3秒前
4秒前
5秒前
jingutaimi完成签到,获得积分10
6秒前
Caer完成签到,获得积分10
8秒前
8秒前
8秒前
机智灯泡完成签到 ,获得积分10
10秒前
11秒前
山复尔尔完成签到 ,获得积分10
11秒前
菲菲完成签到 ,获得积分10
12秒前
精明冰夏完成签到,获得积分10
12秒前
风不定发布了新的文献求助30
13秒前
李程阳完成签到 ,获得积分10
14秒前
小机灵发布了新的文献求助10
15秒前
twinkle完成签到 ,获得积分10
17秒前
小吴完成签到,获得积分10
18秒前
选兵完成签到,获得积分10
19秒前
伶俐的金连完成签到 ,获得积分10
19秒前
pass完成签到 ,获得积分10
19秒前
曲淳完成签到,获得积分10
20秒前
20秒前
哆啦小奶龙完成签到,获得积分10
21秒前
21秒前
爱听歌电灯胆完成签到,获得积分10
21秒前
忧伤的映阳完成签到 ,获得积分10
21秒前
Lucas应助吃死你啦啦采纳,获得10
24秒前
点点点完成签到 ,获得积分10
28秒前
清秀小霸王完成签到,获得积分10
28秒前
29秒前
丁昂霄完成签到 ,获得积分10
30秒前
嘁嘁嘁完成签到,获得积分10
31秒前
HH完成签到,获得积分10
33秒前
雅士白农学家完成签到,获得积分10
33秒前
兜兜风gf完成签到 ,获得积分10
34秒前
称心的冰安完成签到,获得积分10
34秒前
yinlao完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504