Deep learning model with L1 penalty for predicting breast cancer metastasis using gene expression data

过度拟合 乳腺癌 深度学习 随机森林 人工智能 计算机科学 转移 逻辑回归 机器学习 支持向量机 分类器(UML) 交叉验证 人工神经网络 肿瘤科 癌症 医学 内科学
作者
J.-Y. Kim,Minhyeok Lee,Junhee Seok
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:4 (2): 025026-025026 被引量:4
标识
DOI:10.1088/2632-2153/acd987
摘要

Abstract Breast cancer has the highest incidence and death rate among women; moreover, its metastasis to other organs increases the mortality rate. Since several studies have reported gene expression and cancer prognosis to be related, the study of breast cancer metastasis using gene expression is crucial. To this end, a novel deep neural network architecture, deep learning-based cancer metastasis estimator (DeepCME), is proposed in this paper for predicting breast cancer metastasis. However, the problem of overfitting occurs frequently while training deep learning models using gene expression data because they contain a large number of genes and the sample size is rather small. To address overfitting, several regularization methods are implemented, such as L1 penalty, batch normalization, and dropout. To demonstrate the superior performance of our model, area under curve (AUC) scores are evaluated and then compared with five baseline models: logistic regression, support vector classifier (SVC), random forest, decision tree, and k -nearest neighbor. Considering results, DeepCME demonstrates the highest average AUC scores in most cross-validation cases, and the average AUC score of DeepCME is 0.754, which is approximately 12.9% higher than SVC, the second-best model. In addition, the 30 most significant genes related to breast cancer metastasis are identified based on DeepCME results and some are discussed in further detail considering the reports from some previous medical studies. Considering the high expense involved in measuring the expression of a single gene, the ability to develop the cost-effective and time-efficient tests using only a few key genes is valuable. Based on this study, we expect DeepCME to be utilized clinically for predicting breast cancer metastasis and be applied to other types of cancer as well after further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助ademwy采纳,获得10
1秒前
ximomm完成签到,获得积分10
2秒前
冷静的夏槐关注了科研通微信公众号
2秒前
4秒前
完美世界应助陈曦采纳,获得10
5秒前
欣喜晓夏发布了新的文献求助10
5秒前
6秒前
拜无忧完成签到,获得积分10
7秒前
Lmyznl完成签到 ,获得积分10
7秒前
潇洒的诗桃应助yayaya采纳,获得20
10秒前
10秒前
10秒前
11秒前
西西弗斯完成签到,获得积分20
12秒前
yile完成签到,获得积分10
13秒前
13秒前
泥巴象发布了新的文献求助10
13秒前
lhnee发布了新的文献求助10
15秒前
Hh完成签到,获得积分10
16秒前
哈哈完成签到,获得积分10
16秒前
西西弗斯发布了新的文献求助10
16秒前
17秒前
18秒前
科研顺完成签到 ,获得积分10
18秒前
18秒前
ademwy发布了新的文献求助10
19秒前
零立方完成签到 ,获得积分10
21秒前
山鸟与鱼不同路完成签到 ,获得积分10
24秒前
李海平完成签到 ,获得积分10
24秒前
24秒前
小宝发布了新的文献求助30
25秒前
yufei发布了新的文献求助10
26秒前
lhnee完成签到,获得积分20
27秒前
28秒前
hf发布了新的文献求助10
28秒前
Breeze发布了新的文献求助20
29秒前
Cindy发布了新的文献求助20
31秒前
汉堡包应助科研通管家采纳,获得10
32秒前
麻辣香锅应助科研通管家采纳,获得20
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162896
求助须知:如何正确求助?哪些是违规求助? 2813938
关于积分的说明 7902359
捐赠科研通 2473525
什么是DOI,文献DOI怎么找? 1316888
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187