Hybrid Cognition for Target Tracking in Cognitive Radar Networks

计算机科学 雷达 频道(广播) 干扰(通信) 认知无线电 节点(物理) 认知网络 计算机网络 实时计算 电信 工程类 无线 结构工程
作者
William W. Howard,R. Michael Buehrer
标识
DOI:10.1109/trs.2023.3282846
摘要

This work investigates online learning techniques for a cognitive radar network utilizing feedback from a central coordinator. The available spectrum is divided into channels, and each radar node must transmit in one channel per time step. The network attempts to optimize radar tracking accuracy by learning the optimal channel selection for spectrum sharing and radar performance. We define optimal selection for such a network in relation to the radar observation quality obtainable in a given channel. This is a difficult problem since the network must seek the optimal assignment from nodes to channels, rather than just seek the best overall channel. Since the presence of primary users appears as interference, the approach also improves spectrum sharing performance. In other words, maximizing radar performance also minimizes interference to primary users. Each node is able to learn the quality of several available channels through repeated sensing. We define hybrid cognition as the condition where both the independent radar nodes as well as the central coordinator are modeled as cognitive agents, with restrictions on the amount of information that can be exchanged between the radars and the coordinator. Importantly, each part of the network acts as an online learner, observing the environment to inform future actions. We show that in interference-limited spectrum, where the signal-to-interference-plus-noise ratio varies by channel and over time for a target with fixed radar cross section, a cognitive radar network is able to use information from the central coordinator in order to reduce the amount of time necessary to learn the optimal channel selection. We also show that even limited use of a central coordinator can eliminate collisions, which occur when two nodes select the same channel. We provide several reward functions which capture different aspects of the dynamic radar scenario and describe the online machine learning algorithms which are applicable to this structure. In addition, we study varying levels of feedback, where central coordinator update rates vary. We compare our algorithms against baselines and demonstrate dramatic improvements in convergence time over the prior art. A network using hybrid cognition is able to use a minimal amount of feedback to achieve much faster convergence times and therefore lower tracking error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
上官若男应助苏苏采纳,获得10
1秒前
飞飞完成签到 ,获得积分10
2秒前
打打应助宁ning采纳,获得10
3秒前
3秒前
llllx完成签到,获得积分10
4秒前
唠叨的凌雪完成签到,获得积分10
4秒前
dfhh完成签到,获得积分20
4秒前
KYT发布了新的文献求助10
8秒前
8秒前
9秒前
结实的芷蝶完成签到,获得积分10
9秒前
单纯的手机完成签到,获得积分10
10秒前
SciGPT应助负责的方盒采纳,获得10
11秒前
11秒前
追寻依波完成签到,获得积分10
12秒前
小成驳回了英姑应助
13秒前
203发布了新的文献求助10
13秒前
14秒前
15秒前
研友_ZAVod8发布了新的文献求助10
15秒前
15秒前
月饼同学发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
18秒前
居安关注了科研通微信公众号
19秒前
苏苏发布了新的文献求助10
19秒前
20秒前
子车茗应助温血动物采纳,获得30
20秒前
21秒前
huahuahua发布了新的文献求助20
22秒前
赵霜艳发布了新的文献求助10
22秒前
扬帆远航发布了新的文献求助10
23秒前
二三语逢山外山完成签到 ,获得积分10
23秒前
xix发布了新的文献求助10
24秒前
香蕉觅云应助LUNE采纳,获得30
25秒前
26秒前
含糊的太英完成签到,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050917
求助须知:如何正确求助?哪些是违规求助? 4278485
关于积分的说明 13336586
捐赠科研通 4093551
什么是DOI,文献DOI怎么找? 2240413
邀请新用户注册赠送积分活动 1247041
关于科研通互助平台的介绍 1176012