Hybrid Cognition for Target Tracking in Cognitive Radar Networks

计算机科学 雷达 频道(广播) 干扰(通信) 认知无线电 节点(物理) 认知网络 计算机网络 实时计算 电信 工程类 无线 结构工程
作者
William W. Howard,R. Michael Buehrer
标识
DOI:10.1109/trs.2023.3282846
摘要

This work investigates online learning techniques for a cognitive radar network utilizing feedback from a central coordinator. The available spectrum is divided into channels, and each radar node must transmit in one channel per time step. The network attempts to optimize radar tracking accuracy by learning the optimal channel selection for spectrum sharing and radar performance. We define optimal selection for such a network in relation to the radar observation quality obtainable in a given channel. This is a difficult problem since the network must seek the optimal assignment from nodes to channels, rather than just seek the best overall channel. Since the presence of primary users appears as interference, the approach also improves spectrum sharing performance. In other words, maximizing radar performance also minimizes interference to primary users. Each node is able to learn the quality of several available channels through repeated sensing. We define hybrid cognition as the condition where both the independent radar nodes as well as the central coordinator are modeled as cognitive agents, with restrictions on the amount of information that can be exchanged between the radars and the coordinator. Importantly, each part of the network acts as an online learner, observing the environment to inform future actions. We show that in interference-limited spectrum, where the signal-to-interference-plus-noise ratio varies by channel and over time for a target with fixed radar cross section, a cognitive radar network is able to use information from the central coordinator in order to reduce the amount of time necessary to learn the optimal channel selection. We also show that even limited use of a central coordinator can eliminate collisions, which occur when two nodes select the same channel. We provide several reward functions which capture different aspects of the dynamic radar scenario and describe the online machine learning algorithms which are applicable to this structure. In addition, we study varying levels of feedback, where central coordinator update rates vary. We compare our algorithms against baselines and demonstrate dramatic improvements in convergence time over the prior art. A network using hybrid cognition is able to use a minimal amount of feedback to achieve much faster convergence times and therefore lower tracking error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
音悦台发布了新的文献求助10
1秒前
虚心岂愈完成签到,获得积分10
2秒前
3秒前
法外潮湿宝贝完成签到 ,获得积分10
3秒前
3秒前
3秒前
mys完成签到,获得积分10
4秒前
hhhhhhhhhh完成签到 ,获得积分10
4秒前
4秒前
95完成签到 ,获得积分10
4秒前
5秒前
5秒前
pianokjt发布了新的文献求助10
6秒前
6秒前
迅猛2002完成签到,获得积分10
6秒前
7秒前
1310发布了新的文献求助30
7秒前
ayayaya完成签到 ,获得积分10
7秒前
万能图书馆应助我心飞扬采纳,获得10
7秒前
xul279发布了新的文献求助10
7秒前
orixero应助王贺采纳,获得10
8秒前
咯咚完成签到 ,获得积分10
8秒前
QJZ发布了新的文献求助10
9秒前
机智语梦完成签到,获得积分10
9秒前
玛丽发布了新的文献求助10
10秒前
阿腾发布了新的文献求助10
10秒前
小蘑菇应助wwx采纳,获得10
10秒前
浅碎时光完成签到,获得积分10
11秒前
深情安青应助枫落无霜采纳,获得10
12秒前
科研通AI2S应助海洋采纳,获得10
13秒前
13秒前
14秒前
1310完成签到,获得积分10
14秒前
废柴完成签到,获得积分10
15秒前
星辰大海应助君君欧采纳,获得10
16秒前
大个应助hai采纳,获得10
16秒前
16秒前
我心飞扬发布了新的文献求助10
16秒前
17秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180636
求助须知:如何正确求助?哪些是违规求助? 2830962
关于积分的说明 7981889
捐赠科研通 2492629
什么是DOI,文献DOI怎么找? 1329721
科研通“疑难数据库(出版商)”最低求助积分说明 635798
版权声明 602954