亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

计算机科学 八叉树 编码(内存) 体素 点云 卷积神经网络 人工智能 算法 模式识别(心理学)
作者
Emre C. Kaya,Ioan Tabus
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 83678-83691
标识
DOI:10.1109/access.2022.3197295
摘要

In this paper we propose a new paradigm for encoding the geometry of dense point cloud sequences, where a convolutional neural network (CNN), which estimates the encoding distributions, is optimized on several frames of the sequence to be compressed. We adopt lightweight CNN structures, we perform training as part of the encoding process and the CNN parameters are transmitted as part of the bitstream. The newly proposed encoding scheme operates on the octree representation for each point cloud, consecutively encoding each octree resolution level. At every octree resolution level, the voxel grid is traversed section-by-section (each section being perpendicular to a selected coordinate axis), and in each section, the occupancies of groups of two-by-two voxels are encoded at once in a single arithmetic coding operation. A context for the conditional encoding distribution is defined for each two-by-two group of voxels based on the information available about the occupancy of the neighboring voxels in the current and lower resolution layers of the octree. The CNN estimates the probability mass functions of the occupancy patterns of all the voxel groups from one section in four phases. In each new phase, the contexts are updated with the occupancies encoded in the previous phase, and each phase estimates the probabilities in parallel, providing a reasonable trade-off between the parallelism of the processing and the informativeness of the contexts. The CNN training time is comparable to the time spent in the remaining encoding steps, leading to competitive overall encoding times. The bitrates and encoding-decoding times compare favorably with those of recently published compression schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
疯疯发布了新的文献求助10
6秒前
mengyuhuan完成签到 ,获得积分0
41秒前
43秒前
Puan应助科研通管家采纳,获得10
45秒前
Puan应助科研通管家采纳,获得10
45秒前
于是乎完成签到 ,获得积分10
1分钟前
FashionBoy应助gujianhua采纳,获得10
1分钟前
SciGPT应助热情紫丝采纳,获得10
1分钟前
1分钟前
gujianhua发布了新的文献求助10
1分钟前
无情的瑾瑜完成签到 ,获得积分10
2分钟前
2分钟前
Puan应助科研通管家采纳,获得10
2分钟前
caca完成签到,获得积分10
3分钟前
落后的西牛完成签到 ,获得积分10
3分钟前
SciGPT应助llllly采纳,获得10
4分钟前
4分钟前
llllly完成签到,获得积分10
4分钟前
4分钟前
llllly发布了新的文献求助10
4分钟前
凶狠的盛男完成签到 ,获得积分10
4分钟前
4分钟前
牛少辉发布了新的文献求助10
4分钟前
Puan应助科研通管家采纳,获得10
4分钟前
NNN7完成签到,获得积分10
4分钟前
烟花应助狄绮采纳,获得10
5分钟前
5分钟前
狄绮发布了新的文献求助10
5分钟前
俭朴蜜蜂完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
qiu完成签到,获得积分10
5分钟前
CodeCraft应助土豆金采纳,获得10
5分钟前
bkagyin应助狄绮采纳,获得10
5分钟前
5分钟前
5分钟前
狄绮发布了新的文献求助10
5分钟前
狄绮完成签到,获得积分10
5分钟前
6分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171530
求助须知:如何正确求助?哪些是违规求助? 2822431
关于积分的说明 7939204
捐赠科研通 2483045
什么是DOI,文献DOI怎么找? 1322894
科研通“疑难数据库(出版商)”最低求助积分说明 633795
版权声明 602627