析氧
纳米颗粒
催化作用
分解水
化学
氧气
光谱学
氧化物
密度泛函理论
材料科学
化学物理
化学工程
纳米技术
物理化学
电极
电化学
计算化学
光催化
物理
工程类
量子力学
生物化学
有机化学
作者
Felix T. Haase,Arno Bergmann,Travis E. Jones,Janis Timoshenko,Antonia Herzog,Hyo Sang Jeon,Clara Rettenmaier,Beatriz Roldán Cuenya
出处
期刊:Nature Energy
[Springer Nature]
日期:2022-08-08
卷期号:7 (8): 765-773
被引量:207
标识
DOI:10.1038/s41560-022-01083-w
摘要
Abstract Water electrolysis is a key technology to establish CO 2 -neutral hydrogen production. Nonetheless, the near-surface structure of electrocatalysts during the anodic oxygen evolution reaction (OER) is still largely unknown, which hampers knowledge-driven optimization. Here using operando X-ray absorption spectroscopy and density functional theory calculations, we provide quantitative near-surface structural insights into oxygen-evolving CoO x (OH) y nanoparticles by tracking their size-dependent catalytic activity down to 1 nm and their structural adaptation to OER conditions. We uncover a superior intrinsic OER activity of sub-5 nm nanoparticles and a size-dependent oxidation leading to a near-surface Co–O bond contraction during OER. We find that accumulation of oxidative charge within the surface Co 3+ O 6 units triggers an electron redistribution and an oxyl radical as predominant surface-terminating motif. This contrasts the long-standing view of high-valent metal ions driving the OER, and thus, our advanced operando spectroscopy study provides much needed fundamental understanding of the oxygen-evolving near-surface chemistry.
科研通智能强力驱动
Strongly Powered by AbleSci AI