Remote estimates of soil organic carbon using multi-temporal synthetic images and the probability hybrid model

数字土壤制图 土壤图 环境科学 表土 土壤碳 归一化差异植被指数 随机森林 土壤质地 遥感 土壤科学 计算机科学 土壤水分 人工智能 气候变化 地质学 海洋学
作者
Wang Xiang,Liping Wang,Sijia Li,Zongming Wang,Miao Zheng,Kaishan Song
出处
期刊:Geoderma [Elsevier BV]
卷期号:425: 116066-116066 被引量:8
标识
DOI:10.1016/j.geoderma.2022.116066
摘要

Soil organic carbon (SOC) plays a key role in soil function, ecosystem services, and the global carbon cycle. Digital SOC mapping is essential for agricultural production management. Digital SOC mapping based on multi-source remote sensing data has been integrated well into prediction models and methodological approaches on different mapping scales. However, the mixed use of synthetic images and the application of the hybrid model considering the soil classification probability are rare. Here, we propose a probability hybrid model to estimate and map SOC content and distribution. Multi-temporal synthetic images were used to build the probability hybrid model. One hundred forty topsoil samples were collected in Suihua, a city in a typical black soil region in China. Cloud-free Sentinel-2 images were acquired from the bare soil periods between 2018 and 2021. Minimum, maximum, mean, and median synthetic images were calculated using single images from the same period. The random forest and support vector machine models were used for discriminating soil class and calculating soil classification probability, and then random forest regression model was applied to SOC mapping. Soil class mapping and classification probability were performed for Phaeozems, Chernozems, and Cambisols of the World Reference Base for Soil Resources (WRB) based on soil texture, climatic factors, and the normalized differential vegetation index (NDVI). Based on soil class mapping results, global models using single temporal images and multi-temporal images, the hybrid model using multi-temporal images for the three soil classes as well as a probability hybrid model using multi-temporal images were built and compared their SOC predictions. Our study showed that (1) Phaeozems, Chernozems and Cambisols could be classified accurately, and the overall validation accuracy of random forest model was 91.67%. (2) The correlations of SOC with bands and band indices improved using multi-temporal images, and the use of mixed synthetic images was better than the use of only one synthetic image. (3) The hybrid model performed far better than the global models, and the probability hybrid model led to the highest prediction accuracy, a validation R2 of 0.77 and an RMSE of 2.30 g kg−1. (4) The probability hybrid model was more accurate than the original hybrid model for digital SOC mapping, and the SOC distribution in boundary regions was smoother and more continuous. Our results suggest that the probability hybrid model has a large potential for SOC prediction and mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tracer发布了新的文献求助10
刚刚
高新慧发布了新的文献求助10
1秒前
1秒前
rh1006完成签到,获得积分10
2秒前
3秒前
巴黎的防发布了新的文献求助10
3秒前
3秒前
4秒前
竹精灵完成签到,获得积分10
4秒前
AATRAHASIS完成签到,获得积分10
4秒前
4秒前
传奇3应助zhaxiao采纳,获得10
5秒前
AOTUMAN完成签到,获得积分10
6秒前
6秒前
应天亦发布了新的文献求助10
6秒前
6秒前
颖w完成签到,获得积分10
7秒前
smart完成签到,获得积分10
8秒前
8秒前
小蘑菇应助hahhh7采纳,获得10
8秒前
T拐拐发布了新的文献求助10
9秒前
达达利亚发布了新的文献求助10
9秒前
LYL2003发布了新的文献求助30
10秒前
鸿hhh完成签到,获得积分20
10秒前
10秒前
MSBLANK完成签到,获得积分10
10秒前
Gauss应助清风采纳,获得30
11秒前
你我的共同完成签到 ,获得积分10
12秒前
酱啊油发布了新的文献求助10
12秒前
丙烯酸树脂完成签到,获得积分10
13秒前
BB完成签到,获得积分10
13秒前
坦率的匪应助静仰星空采纳,获得10
14秒前
14秒前
actor2006完成签到,获得积分10
15秒前
zhaxiao完成签到,获得积分10
15秒前
15秒前
希望天下0贩的0应助淘淘采纳,获得10
15秒前
冰火油条虾完成签到,获得积分10
15秒前
陈逸恒发布了新的文献求助10
15秒前
大红完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653