清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Remote estimates of soil organic carbon using multi-temporal synthetic images and the probability hybrid model

数字土壤制图 土壤图 环境科学 表土 土壤碳 归一化差异植被指数 随机森林 土壤质地 遥感 土壤科学 计算机科学 土壤水分 人工智能 气候变化 地质学 海洋学
作者
Wang Xiang,Liping Wang,Sijia Li,Zongming Wang,Miao Zheng,Kaishan Song
出处
期刊:Geoderma [Elsevier]
卷期号:425: 116066-116066 被引量:8
标识
DOI:10.1016/j.geoderma.2022.116066
摘要

Soil organic carbon (SOC) plays a key role in soil function, ecosystem services, and the global carbon cycle. Digital SOC mapping is essential for agricultural production management. Digital SOC mapping based on multi-source remote sensing data has been integrated well into prediction models and methodological approaches on different mapping scales. However, the mixed use of synthetic images and the application of the hybrid model considering the soil classification probability are rare. Here, we propose a probability hybrid model to estimate and map SOC content and distribution. Multi-temporal synthetic images were used to build the probability hybrid model. One hundred forty topsoil samples were collected in Suihua, a city in a typical black soil region in China. Cloud-free Sentinel-2 images were acquired from the bare soil periods between 2018 and 2021. Minimum, maximum, mean, and median synthetic images were calculated using single images from the same period. The random forest and support vector machine models were used for discriminating soil class and calculating soil classification probability, and then random forest regression model was applied to SOC mapping. Soil class mapping and classification probability were performed for Phaeozems, Chernozems, and Cambisols of the World Reference Base for Soil Resources (WRB) based on soil texture, climatic factors, and the normalized differential vegetation index (NDVI). Based on soil class mapping results, global models using single temporal images and multi-temporal images, the hybrid model using multi-temporal images for the three soil classes as well as a probability hybrid model using multi-temporal images were built and compared their SOC predictions. Our study showed that (1) Phaeozems, Chernozems and Cambisols could be classified accurately, and the overall validation accuracy of random forest model was 91.67%. (2) The correlations of SOC with bands and band indices improved using multi-temporal images, and the use of mixed synthetic images was better than the use of only one synthetic image. (3) The hybrid model performed far better than the global models, and the probability hybrid model led to the highest prediction accuracy, a validation R2 of 0.77 and an RMSE of 2.30 g kg−1. (4) The probability hybrid model was more accurate than the original hybrid model for digital SOC mapping, and the SOC distribution in boundary regions was smoother and more continuous. Our results suggest that the probability hybrid model has a large potential for SOC prediction and mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
52秒前
1分钟前
zhzh0618发布了新的文献求助10
1分钟前
soar完成签到 ,获得积分10
1分钟前
naczx完成签到,获得积分10
1分钟前
1分钟前
2分钟前
xzn1123完成签到,获得积分0
2分钟前
文与武完成签到 ,获得积分10
2分钟前
终究是残念完成签到,获得积分10
2分钟前
彩色的芷容完成签到 ,获得积分20
2分钟前
2分钟前
2分钟前
枫林摇曳完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
xun完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Shinkai39完成签到 ,获得积分10
4分钟前
宇文雨文完成签到 ,获得积分10
4分钟前
不想长大完成签到 ,获得积分10
5分钟前
5分钟前
善学以致用应助zhangxr采纳,获得10
5分钟前
完美的海发布了新的文献求助10
5分钟前
秋夜临完成签到,获得积分10
5分钟前
野椒搞科研完成签到,获得积分10
5分钟前
Shirley发布了新的文献求助10
5分钟前
小乙猪完成签到 ,获得积分0
5分钟前
CipherSage应助Shirley采纳,获得10
6分钟前
花花糖果完成签到 ,获得积分10
6分钟前
imi完成签到 ,获得积分10
7分钟前
WD完成签到 ,获得积分10
7分钟前
wild_cube完成签到 ,获得积分10
8分钟前
石勒苏益格完成签到,获得积分10
9分钟前
跳跃太清完成签到 ,获得积分10
9分钟前
9分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162346
求助须知:如何正确求助?哪些是违规求助? 2813331
关于积分的说明 7899783
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142