GL-PINN algorithm for inferring velocity and pressure fields from sparse concentration field

领域(数学) 算法 血流 压力梯度 数字减影血管造影 矢量场 减法 采样(信号处理) 计算机科学 血压 人工智能 血管造影 数学 物理 计算机视觉 放射科 几何学 医学 算术 滤波器(信号处理) 机械 纯数学
作者
Jie Liu,Rongwei Zhang,Meng-Xiao Luan,Yong‐Jiang Li,Kai‐Rong Qin
标识
DOI:10.1109/icca54724.2022.9831918
摘要

The distributions of velocity and pressure in blood vessels are essential information for the diagnosis and treatment of vascular diseases. Conventional medical imaging techniques such as ultrasound Doppler and computer tomography are suitable for point measurement of blood velocity. The reconstruction of velocity and pressure distributions are challenging and time-consuming. Even digital subtraction angiography provides the spatiotemporal concentration of the contrast medium in blood vessels, the blood velocity is evaluated empirically by physicians in the clinic. It is still challenging to infer the flow field information from the concentration distribution. In this study, we propose a novel inferring method to reconstruct the velocity field and the pressure field from a fractional sampling of the concentration field. This method combines the physics-informed neural network (PINN) algorithm with gradient limitations, referring to as the gradient-limited PINN (GL-PINN). The results demonstrate that the GL-PINN algorithm is capable of inferring the velocity field and pressure field from the concentration field. The calculation error is less than 1% compared with Comsol results. Moreover, the GL-PINN algorithm with gradient constraints shows a better accuracy than the traditional PINN algorithm. The proposed GL-PINN is promising in inferring the blood velocity and pressure from DSA for the diagnosis of vascular diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助董董采纳,获得10
刚刚
1秒前
2秒前
orixero应助阿奇小白熊采纳,获得10
2秒前
领导范儿应助无奈的鞋子采纳,获得10
4秒前
jianwuzhou完成签到,获得积分10
5秒前
6秒前
7秒前
Yvoone完成签到,获得积分10
7秒前
shi1207863831发布了新的文献求助10
7秒前
7秒前
7秒前
喜欢看神仙打架完成签到 ,获得积分10
9秒前
大魔王发布了新的文献求助10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
shennie发布了新的文献求助10
10秒前
10秒前
怕黑沛山发布了新的文献求助10
11秒前
12秒前
axiba发布了新的文献求助10
12秒前
0000发布了新的文献求助10
13秒前
13秒前
ke完成签到,获得积分10
13秒前
16秒前
云蓝完成签到,获得积分10
16秒前
真君山山长完成签到,获得积分10
16秒前
16秒前
好的好的完成签到 ,获得积分20
17秒前
17秒前
19秒前
bianollo发布了新的文献求助10
19秒前
鹅小小完成签到,获得积分10
20秒前
多情的紫菜完成签到 ,获得积分10
21秒前
受伤翠容发布了新的文献求助30
21秒前
勿忘心安发布了新的文献求助10
21秒前
moonlight完成签到,获得积分10
21秒前
24秒前
三点完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594252
求助须知:如何正确求助?哪些是违规求助? 4679915
关于积分的说明 14812161
捐赠科研通 4646417
什么是DOI,文献DOI怎么找? 2534795
邀请新用户注册赠送积分活动 1502804
关于科研通互助平台的介绍 1469490