亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BrainNPT: Pre-training Transformer Networks for Brain Network Classification

计算机科学 人工智能 变压器 杠杆(统计) 人工神经网络 机器学习 嵌入 标记数据 训练集 安全性令牌 模式识别(心理学) 工程类 电压 电气工程 计算机安全
作者
Jinlong Hu,Yangmin Huang,Nan Wang,Shoubin Dong
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:32: 2727-2736 被引量:2
标识
DOI:10.1109/tnsre.2024.3434343
摘要

Deep learning methods have advanced quickly in brain imaging analysis over the past few years, but they are usually restricted by the limited labeled data. Pre-trained model on unlabeled data has presented promising improvement in feature learning in many domains, such as natural language processing. However, this technique is under-explored in brain network analysis. In this paper, we focused on pre-training methods with Transformer networks to leverage existing unlabeled data for brain functional network classification. First, we proposed a Transformer-based neural network, named as BrainNPT, for brain functional network classification. The proposed method leveraged token as a classification embedding vector for the Transformer model to effectively capture the representation of brain networks. Second, we proposed a pre-training framework for BrainNPT model to leverage unlabeled brain network data to learn the structure information of brain functional networks. The results of classification experiments demonstrated the BrainNPT model without pre-training achieved the best performance with the state-of-the-art models, and the BrainNPT model with pre-training strongly outperformed the state-of-the-art models. The pre-training BrainNPT model improved 8.75% of accuracy compared with the model without pre-training. We further compared the pre-training strategies and the data augmentation methods, analyzed the influence of the parameters of the model, and explained the trained model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
Mr-Li-Happy发布了新的文献求助10
12秒前
Mr-Li-Happy完成签到,获得积分10
20秒前
49秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
1分钟前
1分钟前
迷人幻波发布了新的文献求助10
1分钟前
Who发布了新的文献求助10
1分钟前
1分钟前
潮人完成签到 ,获得积分10
2分钟前
2分钟前
康康舞曲完成签到 ,获得积分10
2分钟前
靳言发布了新的文献求助10
2分钟前
634301059完成签到 ,获得积分10
2分钟前
英姑应助靳言采纳,获得10
2分钟前
winter1127发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
斯文的苡完成签到,获得积分10
3分钟前
3分钟前
Owen应助淡淡无春采纳,获得30
3分钟前
3分钟前
多边棱发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
隐形曼青应助andrele采纳,获得10
4分钟前
4分钟前
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
热情依白应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
科目三应助andrele采纳,获得10
5分钟前
生动思萱发布了新的文献求助10
5分钟前
生动思萱关注了科研通微信公众号
5分钟前
6分钟前
所所应助andrele采纳,获得10
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307414
求助须知:如何正确求助?哪些是违规求助? 2941030
关于积分的说明 8500245
捐赠科研通 2615428
什么是DOI,文献DOI怎么找? 1428900
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648461