材料科学
阳极
沉积(地质)
锌
化学物理
纳米技术
电荷(物理)
电荷密度
光电子学
电极
冶金
物理化学
物理
古生物学
化学
量子力学
沉积物
生物
作者
Xiaomeng Hu,Zhongqian He,Qiwen Zhao,Jie Zhou,Changding Wang,Shaozhen Huang,Gang Zhou,Bingang Xu,Bin Wang,Libao Chen,Yuejiao Chen
标识
DOI:10.1002/adfm.202409247
摘要
Abstract The plating/stripping behavior of Zn ions on the Zn anode, driven by an electric field, is a key process in determining the performance of aqueous zinc ion batteries (AZIBs). Process‐induced unevenness of commercial Zn foils results in poor reversibility of Zn anodes. Herein, a self‐healing dynamic anode/electrolyte interface is constructed by incorporating hydroxyl‐rich alcohols with high charge density and zincophilicity into the original electrolyte. These alcohols selectively anchor on electron‐poor sites in the charging state, inducing domain‐limited deposition of Zn 2+ to achieve a dense, uniform, and flat deposition state. As a result, a durable Zn anode with excellent electrochemical reversibility can be realized in practical cycling (average Coulombic efficiency of 99.5%). Even under deep plating/stripping conditions (5 mA cm −2 and 5mAh cm −2 ), the modified electrolyte exhibits a remarkable repair effect on corroded Zn anodes that have been cycled in base electrolyte, extending the lifespan to over 1,020 h. This represents a 15.6‐fold enhancement in lifespan compared to recycling in the base electrolyte. This strategy for electrolyte additive directly influences the design of ultra‐long‐life AZIBs and provides concrete concepts for the recovery of zinc anodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI