Attention-based stackable graph convolutional network for multi-view learning

计算机科学 图形 利用 人工智能 平滑的 理论计算机科学 机器学习 计算机安全 计算机视觉
作者
Zhiyong Xu,Weibin Chen,Ying Zou,Zihan Fang,Shiping Wang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:180: 106648-106648
标识
DOI:10.1016/j.neunet.2024.106648
摘要

In multi-view learning, graph-based methods like Graph Convolutional Network (GCN) are extensively researched due to effective graph processing capabilities. However, most GCN-based methods often require complex preliminary operations such as sparsification, which may bring additional computation costs and training difficulties. Additionally, as the number of stacking layers increases in most GCN, over-smoothing problem arises, resulting in ineffective utilization of GCN capabilities. In this paper, we propose an attention-based stackable graph convolutional network that captures consistency across views and combines attention mechanism to exploit the powerful aggregation capability of GCN to effectively mitigate over-smoothing. Specifically, we introduce node self-attention to establish dynamic connections between nodes and generate view-specific representations. To maintain cross-view consistency, a data-driven approach is devised to assign attention weights to views, forming a common representation. Finally, based on residual connectivity, we apply an attention mechanism to the original projection features to generate layer-specific complementarity, which compensates for the information loss during graph convolution. Comprehensive experimental results demonstrate that the proposed method outperforms other state-of-the-art methods in multi-view semi-supervised tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年糕发布了新的文献求助10
刚刚
QQ完成签到,获得积分10
1秒前
老黑完成签到 ,获得积分10
1秒前
la完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
玥越完成签到,获得积分10
3秒前
dm11完成签到 ,获得积分10
4秒前
Akim应助靖123456采纳,获得10
5秒前
yizhe完成签到,获得积分10
5秒前
畅畅完成签到 ,获得积分10
5秒前
ChatGPT发布了新的文献求助10
6秒前
李健的小迷弟应助la采纳,获得10
6秒前
ZYN完成签到 ,获得积分10
7秒前
Mason完成签到,获得积分10
8秒前
yizhe发布了新的文献求助10
8秒前
JamesPei应助zzzz采纳,获得10
9秒前
英俊的铭应助aa采纳,获得30
9秒前
xiaohuhuan完成签到,获得积分10
9秒前
bulingbuling完成签到 ,获得积分10
10秒前
一颗小纽扣完成签到,获得积分10
11秒前
席涑完成签到,获得积分10
12秒前
CipherSage应助拼搏的婷冉采纳,获得10
12秒前
luoluo完成签到 ,获得积分10
13秒前
13秒前
醋炒栗子仁完成签到,获得积分10
13秒前
墨尔根戴青完成签到,获得积分10
14秒前
瑾瑜完成签到,获得积分10
15秒前
文小杰完成签到,获得积分10
15秒前
山月完成签到,获得积分10
16秒前
CodeCraft应助研友_LOK59L采纳,获得10
16秒前
16秒前
17秒前
欣慰妙海完成签到 ,获得积分20
17秒前
CodeCraft应助zhaopeipei采纳,获得10
17秒前
LIUYONG发布了新的文献求助10
18秒前
lin发布了新的文献求助10
20秒前
21秒前
九湖夷上完成签到 ,获得积分10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029