Attention-based stackable graph convolutional network for multi-view learning

计算机科学 图形 利用 人工智能 平滑的 理论计算机科学 机器学习 计算机安全 计算机视觉
作者
Zhiyong Xu,Weibin Chen,Ying Zou,Zihan Fang,Shiping Wang
出处
期刊:Neural Networks [Elsevier]
卷期号:180: 106648-106648
标识
DOI:10.1016/j.neunet.2024.106648
摘要

In multi-view learning, graph-based methods like Graph Convolutional Network (GCN) are extensively researched due to effective graph processing capabilities. However, most GCN-based methods often require complex preliminary operations such as sparsification, which may bring additional computation costs and training difficulties. Additionally, as the number of stacking layers increases in most GCN, over-smoothing problem arises, resulting in ineffective utilization of GCN capabilities. In this paper, we propose an attention-based stackable graph convolutional network that captures consistency across views and combines attention mechanism to exploit the powerful aggregation capability of GCN to effectively mitigate over-smoothing. Specifically, we introduce node self-attention to establish dynamic connections between nodes and generate view-specific representations. To maintain cross-view consistency, a data-driven approach is devised to assign attention weights to views, forming a common representation. Finally, based on residual connectivity, we apply an attention mechanism to the original projection features to generate layer-specific complementarity, which compensates for the information loss during graph convolution. Comprehensive experimental results demonstrate that the proposed method outperforms other state-of-the-art methods in multi-view semi-supervised tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助Mr_Hao采纳,获得20
刚刚
研友_VZG7GZ应助无辜洋葱采纳,获得10
刚刚
刚刚
李李完成签到,获得积分10
1秒前
超级水壶发布了新的文献求助10
1秒前
1秒前
1秒前
张自信发布了新的文献求助10
3秒前
开灯人和关灯人完成签到,获得积分10
3秒前
调研昵称发布了新的文献求助10
3秒前
3秒前
3秒前
华仔应助qiqi采纳,获得10
4秒前
Rebecca完成签到,获得积分10
4秒前
4秒前
5秒前
Mlwwq发布了新的文献求助10
5秒前
领导范儿应助长情洙采纳,获得10
5秒前
洋洋完成签到,获得积分20
6秒前
Owen应助WY采纳,获得30
6秒前
6秒前
listener完成签到,获得积分10
7秒前
7秒前
7秒前
调研昵称发布了新的文献求助10
7秒前
8秒前
科研通AI2S应助默默海露采纳,获得10
8秒前
彭于晏应助宝贝采纳,获得10
8秒前
金晶发布了新的文献求助10
9秒前
9秒前
Peter完成签到,获得积分20
9秒前
丰知然应助zhengke924采纳,获得10
9秒前
飘逸晓博完成签到 ,获得积分20
10秒前
coco完成签到 ,获得积分10
10秒前
科研菜鸟发布了新的文献求助10
10秒前
10秒前
大气的乌冬面完成签到,获得积分10
10秒前
10秒前
RUSTY完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762