Graph neural pre-training based drug-target affinity prediction

计算机科学 药物靶点 人工智能 机器学习 卷积神经网络 图形 药品 人工神经网络 训练集 药物发现 标记数据 模式识别(心理学) 生物信息学 化学 药理学 理论计算机科学 生物 医学 生物化学
作者
Qing Ye,Yaxin Sun
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fgene.2024.1452339
摘要

Computational drug-target affinity prediction has the potential to accelerate drug discovery. Currently, pre-training models have achieved significant success in various fields due to their ability to train the model using vast amounts of unlabeled data. However, given the scarcity of drug-target interaction data, pre-training models can only be trained separately on drug and target data, resulting in features that are insufficient for drug-target affinity prediction. To address this issue, in this paper, we design a graph neural pre-training-based drug-target affinity prediction method (GNPDTA). This approach comprises three stages. In the first stage, two pre-training models are utilized to extract low-level features from drug atom graphs and target residue graphs, leveraging a large number of unlabeled training samples. In the second stage, two 2D convolutional neural networks are employed to combine the extracted drug atom features and target residue features into high-level representations of drugs and targets. Finally, in the third stage, a predictor is used to predict the drug-target affinity. This approach fully utilizes both unlabeled and labeled training samples, enhancing the effectiveness of pre-training models for drug-target affinity prediction. In our experiments, GNPDTA outperforms other deep learning methods, validating the efficacy of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niusama完成签到,获得积分10
1秒前
Ava应助付创采纳,获得10
1秒前
zzz发布了新的文献求助10
1秒前
2秒前
elgar612发布了新的文献求助30
2秒前
李健应助木子采纳,获得20
2秒前
2秒前
HI完成签到 ,获得积分10
3秒前
Lucas应助悲伤晴天雨采纳,获得10
3秒前
SciGPT应助大气海露采纳,获得10
3秒前
4秒前
果实发布了新的文献求助10
5秒前
完美世界应助naplzp采纳,获得10
5秒前
天天快乐应助张才豪采纳,获得10
5秒前
斐波拉切土豆完成签到,获得积分10
6秒前
kk发布了新的文献求助20
6秒前
大模型应助qcq采纳,获得10
6秒前
博修发布了新的文献求助10
6秒前
7秒前
蓝橙发布了新的文献求助10
7秒前
8秒前
追寻清完成签到,获得积分10
8秒前
美好乌冬面完成签到,获得积分10
8秒前
9秒前
田様应助1renebaebae采纳,获得10
9秒前
9秒前
11秒前
兮尔完成签到,获得积分10
11秒前
11秒前
yxl01yxl完成签到,获得积分10
11秒前
在水一方应助A.y.w采纳,获得30
12秒前
12秒前
ekdjk完成签到,获得积分10
12秒前
12秒前
丘比特应助电闪采纳,获得10
13秒前
陆小果完成签到,获得积分10
13秒前
JasperChan发布了新的文献求助30
13秒前
所所应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
yookia应助科研通管家采纳,获得20
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960936
求助须知:如何正确求助?哪些是违规求助? 3507194
关于积分的说明 11134321
捐赠科研通 3239560
什么是DOI,文献DOI怎么找? 1790248
邀请新用户注册赠送积分活动 872244
科研通“疑难数据库(出版商)”最低求助积分说明 803149