Lightweight medical image segmentation network with multi-scale feature-guided fusion

人工智能 计算机科学 特征(语言学) 比例(比率) 分割 计算机视觉 图像融合 图像(数学) 图像分割 模式识别(心理学) 融合 地图学 地理 哲学 语言学
作者
Zhiqin Zhu,Kun Yu,Guanqiu Qi,Baisen Cong,Yuanyuan Li,Zexin Li,Xinbo Gao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:182: 109204-109204 被引量:21
标识
DOI:10.1016/j.compbiomed.2024.109204
摘要

In the field of computer-aided medical diagnosis, it is crucial to adapt medical image segmentation to limited computing resources. There is tremendous value in developing accurate, real-time vision processing models that require minimal computational resources. When building lightweight models, there is always a trade-off between computational cost and segmentation performance. Performance often suffers when applying models to meet resource-constrained scenarios characterized by computation, memory, or storage constraints. This remains an ongoing challenge. This paper proposes a lightweight network for medical image segmentation. It introduces a lightweight transformer, proposes a simplified core feature extraction network to capture more semantic information, and builds a multi-scale feature interaction guidance framework. The fusion module embedded in this framework is designed to address spatial and channel complexities. Through the multi-scale feature interaction guidance framework and fusion module, the proposed network achieves robust semantic information extraction from low-resolution feature maps and rich spatial information retrieval from high-resolution feature maps while ensuring segmentation performance. This significantly reduces the parameter requirements for maintaining deep features within the network, resulting in faster inference and reduced floating-point operations (FLOPs) and parameter counts. Experimental results on ISIC2017 and ISIC2018 datasets confirm the effectiveness of the proposed network in medical image segmentation tasks. For instance, on the ISIC2017 dataset, the proposed network achieved a segmentation accuracy of 82.33 % mIoU, and a speed of 71.26 FPS on 256 × 256 images using a GeForce GTX 3090 GPU. Furthermore, the proposed network is tremendously lightweight, containing only 0.524M parameters. The corresponding source codes are available at https://github.com/CurbUni/LMIS-lightweight-network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zixian发布了新的文献求助10
刚刚
1秒前
孙晓婷完成签到,获得积分10
1秒前
慕青应助典雅的土豆采纳,获得10
1秒前
2秒前
nj发布了新的文献求助10
2秒前
3秒前
3秒前
lalala发布了新的文献求助20
4秒前
5秒前
Ale发布了新的文献求助10
5秒前
5秒前
许安完成签到,获得积分10
5秒前
6秒前
李爱国应助blackcatcaptain采纳,获得10
6秒前
就是嘀咕完成签到,获得积分10
6秒前
sssssssss完成签到,获得积分10
7秒前
过时的不愁完成签到,获得积分10
7秒前
逢陈发布了新的文献求助10
8秒前
zj发布了新的文献求助10
8秒前
8秒前
dwls完成签到,获得积分10
9秒前
隐形曼青应助Ale采纳,获得10
9秒前
SciGPT应助水果采纳,获得30
10秒前
10秒前
NexusExplorer应助勤劳的音响采纳,获得10
11秒前
彭于晏应助朽木采纳,获得10
11秒前
ppll3906发布了新的文献求助10
11秒前
12秒前
安安发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
整齐思天发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
Orange应助天易车网官网采纳,获得20
15秒前
FashionBoy应助落后的采波采纳,获得10
16秒前
Yelicious发布了新的文献求助10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298