Lightweight medical image segmentation network with multi-scale feature-guided fusion

人工智能 计算机科学 特征(语言学) 比例(比率) 分割 计算机视觉 图像融合 图像(数学) 图像分割 模式识别(心理学) 融合 地图学 地理 哲学 语言学
作者
Zhiqin Zhu,Kun Yu,Guanqiu Qi,Baisen Cong,Yuanyuan Li,Zexin Li,Xinbo Gao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:182: 109204-109204 被引量:21
标识
DOI:10.1016/j.compbiomed.2024.109204
摘要

In the field of computer-aided medical diagnosis, it is crucial to adapt medical image segmentation to limited computing resources. There is tremendous value in developing accurate, real-time vision processing models that require minimal computational resources. When building lightweight models, there is always a trade-off between computational cost and segmentation performance. Performance often suffers when applying models to meet resource-constrained scenarios characterized by computation, memory, or storage constraints. This remains an ongoing challenge. This paper proposes a lightweight network for medical image segmentation. It introduces a lightweight transformer, proposes a simplified core feature extraction network to capture more semantic information, and builds a multi-scale feature interaction guidance framework. The fusion module embedded in this framework is designed to address spatial and channel complexities. Through the multi-scale feature interaction guidance framework and fusion module, the proposed network achieves robust semantic information extraction from low-resolution feature maps and rich spatial information retrieval from high-resolution feature maps while ensuring segmentation performance. This significantly reduces the parameter requirements for maintaining deep features within the network, resulting in faster inference and reduced floating-point operations (FLOPs) and parameter counts. Experimental results on ISIC2017 and ISIC2018 datasets confirm the effectiveness of the proposed network in medical image segmentation tasks. For instance, on the ISIC2017 dataset, the proposed network achieved a segmentation accuracy of 82.33 % mIoU, and a speed of 71.26 FPS on 256 × 256 images using a GeForce GTX 3090 GPU. Furthermore, the proposed network is tremendously lightweight, containing only 0.524M parameters. The corresponding source codes are available at https://github.com/CurbUni/LMIS-lightweight-network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水木应助忧心的涵菡采纳,获得10
刚刚
典雅碧空应助小涛采纳,获得10
1秒前
1秒前
小雨完成签到,获得积分10
2秒前
2秒前
Lu完成签到,获得积分10
3秒前
3秒前
kecheng应助lalala采纳,获得10
3秒前
言亦云应助minus采纳,获得10
4秒前
4秒前
NexusExplorer应助锦七采纳,获得10
4秒前
4秒前
5秒前
脑洞疼应助自信大雁采纳,获得10
6秒前
heiner发布了新的文献求助30
6秒前
HH完成签到,获得积分10
7秒前
7秒前
搜集达人应助美丽心情采纳,获得10
7秒前
8秒前
fukesi完成签到,获得积分10
8秒前
WTC完成签到 ,获得积分10
8秒前
Orange应助旷野采纳,获得10
8秒前
yanxuhuan完成签到 ,获得积分10
8秒前
yan123发布了新的文献求助10
9秒前
方便面条子完成签到 ,获得积分10
9秒前
9秒前
zzz发布了新的文献求助10
10秒前
10秒前
烂漫臻发布了新的文献求助10
10秒前
小肥吴发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
Ava应助sujustin333采纳,获得10
12秒前
heiner完成签到,获得积分10
12秒前
13秒前
13秒前
牧觅云发布了新的文献求助10
13秒前
13秒前
爱吃冻梨发布了新的文献求助20
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836