Lightweight medical image segmentation network with multi-scale feature-guided fusion

人工智能 计算机科学 特征(语言学) 比例(比率) 分割 计算机视觉 图像融合 图像(数学) 图像分割 模式识别(心理学) 融合 地图学 地理 语言学 哲学
作者
Zhiqin Zhu,Kun Yu,Guanqiu Qi,Baisen Cong,Yuanyuan Li,Zexin Li,Xinbo Gao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:182: 109204-109204 被引量:21
标识
DOI:10.1016/j.compbiomed.2024.109204
摘要

In the field of computer-aided medical diagnosis, it is crucial to adapt medical image segmentation to limited computing resources. There is tremendous value in developing accurate, real-time vision processing models that require minimal computational resources. When building lightweight models, there is always a trade-off between computational cost and segmentation performance. Performance often suffers when applying models to meet resource-constrained scenarios characterized by computation, memory, or storage constraints. This remains an ongoing challenge. This paper proposes a lightweight network for medical image segmentation. It introduces a lightweight transformer, proposes a simplified core feature extraction network to capture more semantic information, and builds a multi-scale feature interaction guidance framework. The fusion module embedded in this framework is designed to address spatial and channel complexities. Through the multi-scale feature interaction guidance framework and fusion module, the proposed network achieves robust semantic information extraction from low-resolution feature maps and rich spatial information retrieval from high-resolution feature maps while ensuring segmentation performance. This significantly reduces the parameter requirements for maintaining deep features within the network, resulting in faster inference and reduced floating-point operations (FLOPs) and parameter counts. Experimental results on ISIC2017 and ISIC2018 datasets confirm the effectiveness of the proposed network in medical image segmentation tasks. For instance, on the ISIC2017 dataset, the proposed network achieved a segmentation accuracy of 82.33 % mIoU, and a speed of 71.26 FPS on 256 × 256 images using a GeForce GTX 3090 GPU. Furthermore, the proposed network is tremendously lightweight, containing only 0.524M parameters. The corresponding source codes are available at https://github.com/CurbUni/LMIS-lightweight-network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
JJG完成签到,获得积分20
3秒前
Hello应助Tiam采纳,获得10
4秒前
4秒前
ty完成签到,获得积分10
6秒前
zehua309完成签到,获得积分10
7秒前
火星上含芙完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
掌门发布了新的文献求助10
10秒前
愉快的花卷完成签到,获得积分10
10秒前
少言完成签到,获得积分10
12秒前
kiko完成签到,获得积分10
13秒前
隐形惜筠完成签到 ,获得积分10
15秒前
黑眼圈完成签到,获得积分10
19秒前
123发布了新的文献求助10
21秒前
22秒前
23秒前
又又妈妈完成签到,获得积分10
23秒前
欢呼的丁真完成签到,获得积分10
24秒前
ty发布了新的文献求助10
24秒前
Faded完成签到 ,获得积分10
25秒前
ding应助Amorfati采纳,获得10
25秒前
好好学习天天向上完成签到,获得积分10
26秒前
所所应助lh采纳,获得10
27秒前
李爱国应助深情丸子采纳,获得10
27秒前
烟花应助阿湫采纳,获得10
27秒前
27秒前
乌梅不乌发布了新的文献求助10
28秒前
28秒前
YY完成签到,获得积分10
29秒前
30秒前
30秒前
Tiam发布了新的文献求助10
30秒前
种花家的狗狗完成签到,获得积分10
30秒前
wisdom完成签到,获得积分10
30秒前
123完成签到,获得积分10
31秒前
温暖芸完成签到,获得积分10
31秒前
32秒前
认真的觅松完成签到 ,获得积分10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048