Lightweight medical image segmentation network with multi-scale feature-guided fusion

人工智能 计算机科学 特征(语言学) 比例(比率) 分割 计算机视觉 图像融合 图像(数学) 图像分割 模式识别(心理学) 融合 地图学 地理 哲学 语言学
作者
Zhiqin Zhu,Kun Yu,Guanqiu Qi,Baisen Cong,Yuanyuan Li,Zexin Li,Xinbo Gao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:182: 109204-109204
标识
DOI:10.1016/j.compbiomed.2024.109204
摘要

In the field of computer-aided medical diagnosis, it is crucial to adapt medical image segmentation to limited computing resources. There is tremendous value in developing accurate, real-time vision processing models that require minimal computational resources. When building lightweight models, there is always a trade-off between computational cost and segmentation performance. Performance often suffers when applying models to meet resource-constrained scenarios characterized by computation, memory, or storage constraints. This remains an ongoing challenge. This paper proposes a lightweight network for medical image segmentation. It introduces a lightweight transformer, proposes a simplified core feature extraction network to capture more semantic information, and builds a multi-scale feature interaction guidance framework. The fusion module embedded in this framework is designed to address spatial and channel complexities. Through the multi-scale feature interaction guidance framework and fusion module, the proposed network achieves robust semantic information extraction from low-resolution feature maps and rich spatial information retrieval from high-resolution feature maps while ensuring segmentation performance. This significantly reduces the parameter requirements for maintaining deep features within the network, resulting in faster inference and reduced floating-point operations (FLOPs) and parameter counts. Experimental results on ISIC2017 and ISIC2018 datasets confirm the effectiveness of the proposed network in medical image segmentation tasks. For instance, on the ISIC2017 dataset, the proposed network achieved a segmentation accuracy of 82.33 % mIoU, and a speed of 71.26 FPS on 256 × 256 images using a GeForce GTX 3090 GPU. Furthermore, the proposed network is tremendously lightweight, containing only 0.524M parameters. The corresponding source codes are available at https://github.com/CurbUni/LMIS-lightweight-network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
九命猫发布了新的文献求助10
1秒前
上上发布了新的文献求助10
1秒前
王德发完成签到,获得积分20
1秒前
沐沐呵完成签到,获得积分10
1秒前
yu完成签到,获得积分20
1秒前
学术圈已祛魅完成签到,获得积分10
1秒前
好事花生完成签到,获得积分10
2秒前
希望天下0贩的0应助艺阳采纳,获得10
3秒前
爆米花应助淡定吃吃采纳,获得10
3秒前
慕青应助牧海冬采纳,获得10
4秒前
4秒前
等待忆安完成签到,获得积分10
5秒前
英俊的铭应助l玖采纳,获得10
5秒前
6秒前
6秒前
7秒前
斯文败类应助Kayz采纳,获得10
8秒前
8秒前
良辰应助可以的采纳,获得10
8秒前
涵涵涵发布了新的文献求助10
9秒前
Mr发布了新的文献求助10
9秒前
大福完成签到,获得积分10
10秒前
guzhfia完成签到,获得积分10
10秒前
10秒前
mojio发布了新的文献求助10
11秒前
JIABABY完成签到,获得积分10
12秒前
细心的冷雪应助cc采纳,获得10
12秒前
顾矜应助liiy采纳,获得10
13秒前
阡绮百怪发布了新的文献求助10
13秒前
牧海冬发布了新的文献求助10
14秒前
14秒前
15秒前
汉堡包应助Lone采纳,获得10
15秒前
16秒前
可爱的函函应助YY采纳,获得30
16秒前
16秒前
17秒前
17秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328109
求助须知:如何正确求助?哪些是违规求助? 2958209
关于积分的说明 8589546
捐赠科研通 2636464
什么是DOI,文献DOI怎么找? 1443022
科研通“疑难数据库(出版商)”最低求助积分说明 668490
邀请新用户注册赠送积分活动 655711