A novel autonomous exploration algorithm via LiDAR/IMU SLAM and hierarchical subsystem for mobile robot in unknown indoor environments

激光雷达 计算机科学 惯性测量装置 移动机器人 同时定位和映射 人工智能 计算机视觉 机器人 遥感 地理
作者
Zhilin Gao,Fei Xie,Yihan Huang,Jing Zhao,Haisen Luo,Xinchen Yan,Fei Zhao,Pin Lyu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016307-016307 被引量:5
标识
DOI:10.1088/1361-6501/ad8177
摘要

Abstract Autonomous exploration in unknown environments is an essential capability for mobile robots. The complexity of autonomous exploration, however, means that existing algorithms struggle to balance efficiency and comprehensiveness, causing low mapping accuracy and redundant path planning. To perform accurate and efficient exploration tasks, we have proposed a novel autonomous exploration algorithm via LiDAR/IMU (Inertial Measurement Unit) Simultaneous Localization and Mapping (SLAM) and hierarchical subsystem for mobile robot in unknown environments. Firstly, to enhance mapping accuracy for mobile robot exploration, LiDAR/IMU SLAM is improved with the assistance of backward propagation and iterated Kalman filter, and Bidirectional Rapidly–Exploring Random Trees* (BI–RRT*) is applied for efficient frontier point detection. Secondly, we optimize local path planning by leveraging information theory through perceptual quality evaluation, which is then integrated with global path planning utilizing an enhanced Travelling Salesman Problem solver and a sparse grid map to amplify exploration efficiency. Thirdly, an enhanced hierarchical autonomous exploration method for mobile robots is proposed, which incorporates local path planning for seamless navigation around highly promising exploration spots, coupled with global path planning to effectively interconnect various sub–regions. Finally, simulations and field tests have demonstrated that the proposed method explores an unknown indoor environment with a 30.8% reduction in exploration time and a 29.9% reduction in exploration path in comparison with Dynamic Stage Viewpoint Planner. The map constructed in this paper has more accurate details and exploration paths have been shortened to ensure effective exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jie完成签到 ,获得积分10
1秒前
1秒前
2秒前
ceds完成签到,获得积分10
2秒前
2秒前
苹果味橙C完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
bkagyin应助HanyuJing采纳,获得10
4秒前
蘑菇应助三块石头采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Kotori完成签到,获得积分10
5秒前
5秒前
慕青应助一只小羊采纳,获得10
6秒前
小六发布了新的文献求助10
6秒前
王玥发布了新的文献求助10
7秒前
Twonej应助iiiau采纳,获得30
7秒前
林淳完成签到,获得积分10
7秒前
毛毛虫发布了新的文献求助10
7秒前
8秒前
蓝天应助涨知识ing采纳,获得10
8秒前
8秒前
老年发布了新的文献求助10
8秒前
ding应助果汁采纳,获得10
8秒前
海的呼唤发布了新的文献求助10
8秒前
jhw发布了新的文献求助10
9秒前
圆锥香蕉应助失眠夏山采纳,获得20
9秒前
10秒前
Xhhaai应助花生油炒花生米采纳,获得10
11秒前
11秒前
李海翔完成签到,获得积分10
12秒前
自觉思萱发布了新的文献求助10
12秒前
12秒前
顾矜应助实验菜菜君采纳,获得20
13秒前
R沫完成签到,获得积分10
13秒前
gu发布了新的文献求助10
13秒前
蓝天应助FEN采纳,获得10
14秒前
Lee发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106