A Novel Autonomous Exploration Algorithm Via LiDAR/IMU SLAM and Hierarchical Subsystem for Mobile Robot in Unknown Indoor Environments

激光雷达 计算机科学 惯性测量装置 移动机器人 同时定位和映射 人工智能 计算机视觉 机器人 遥感 地理
作者
Zhilin Gao,Fei Xie,Yihan Huang,Jing Zhao,Haisen Luo,Xinchen Yan,Fei Zhao,Pin Lyu
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6501/ad8177
摘要

Abstract Autonomous exploration in unknown environments is an essential capability for mobile robots. The complexity of autonomous exploration, however, means that existing algorithms struggle to balance efficiency and comprehensiveness, causing low mapping accuracy and redundant path planning. To perform accurate and efficient exploration tasks, we have proposed a novel autonomous exploration algorithm via LiDAR/IMU Simultaneous Localization and Mapping (SLAM) and hierarchical subsystem for mobile robot in unknown environments. Firstly, to enhance mapping accuracy for mobile robot exploration, LiDAR/IMU SLAM is improved with the assistance of backward propagation and iterated Kalman filter, and Bidirectional Rapidly-Exploring Random Trees* (BI-RRT*) is applied for efficient frontier point detection. Secondly, we optimize local path planning by leveraging information theory through perceptual quality evaluation, which is then integrated with global path planning utilizing an enhanced Travelling Salesman Problem (TSP) solver and a sparse grid map to amplify exploration efficiency. Thirdly, an enhanced hierarchical autonomous exploration method for mobile robots is proposed, which incorporates local path planning for seamless navigation around highly promising exploration spots, coupled with global path planning to effectively interconnect various sub-regions. Finally, simulations and field tests have demonstrated that the proposed method explores an unknown indoor environment with a 30.8% reduction in exploration time and a 29.9% reduction in exploration path in comparison with Dynamic Stage Viewpoint Planner (DSVP). The map constructed in this paper has more accurate details and exploration paths have been shortened to ensure effective exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
帅气鹭洋发布了新的文献求助10
1秒前
liriyii发布了新的文献求助10
1秒前
1秒前
落寞砖家发布了新的文献求助10
2秒前
5秒前
5秒前
6秒前
7秒前
zzz发布了新的文献求助10
7秒前
呆瓜完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
卡布达发布了新的文献求助10
10秒前
Iwan发布了新的文献求助10
10秒前
12秒前
落落完成签到,获得积分10
13秒前
一个搞不懂晶体学的小牛马完成签到,获得积分10
13秒前
14秒前
obito驳回了Akim应助
14秒前
这瓜不卖完成签到,获得积分10
15秒前
15秒前
dpk完成签到,获得积分10
17秒前
scenery0510完成签到,获得积分10
17秒前
lalaland完成签到,获得积分10
18秒前
zyf1980发布了新的文献求助10
22秒前
梓涵关注了科研通微信公众号
22秒前
杭谷波关注了科研通微信公众号
22秒前
麻麻薯完成签到 ,获得积分10
24秒前
海正发布了新的文献求助10
25秒前
机智的万声完成签到,获得积分10
25秒前
26秒前
26秒前
CodeCraft应助昆明官渡酒店采纳,获得10
27秒前
木叶研完成签到,获得积分10
27秒前
大模型应助机智的万声采纳,获得10
29秒前
机灵的凉面完成签到,获得积分10
29秒前
ff发布了新的文献求助10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959401
求助须知:如何正确求助?哪些是违规求助? 3505622
关于积分的说明 11124998
捐赠科研通 3237410
什么是DOI,文献DOI怎么找? 1789120
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844