A novel autonomous exploration algorithm via LiDAR/IMU SLAM and hierarchical subsystem for mobile robot in unknown indoor environments

激光雷达 计算机科学 惯性测量装置 移动机器人 同时定位和映射 人工智能 计算机视觉 机器人 遥感 地理
作者
Zhilin Gao,Fei Xie,Yihan Huang,Jing Zhao,Haisen Luo,Xinchen Yan,Fei Zhao,Pin Lyu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016307-016307 被引量:5
标识
DOI:10.1088/1361-6501/ad8177
摘要

Abstract Autonomous exploration in unknown environments is an essential capability for mobile robots. The complexity of autonomous exploration, however, means that existing algorithms struggle to balance efficiency and comprehensiveness, causing low mapping accuracy and redundant path planning. To perform accurate and efficient exploration tasks, we have proposed a novel autonomous exploration algorithm via LiDAR/IMU (Inertial Measurement Unit) Simultaneous Localization and Mapping (SLAM) and hierarchical subsystem for mobile robot in unknown environments. Firstly, to enhance mapping accuracy for mobile robot exploration, LiDAR/IMU SLAM is improved with the assistance of backward propagation and iterated Kalman filter, and Bidirectional Rapidly–Exploring Random Trees* (BI–RRT*) is applied for efficient frontier point detection. Secondly, we optimize local path planning by leveraging information theory through perceptual quality evaluation, which is then integrated with global path planning utilizing an enhanced Travelling Salesman Problem solver and a sparse grid map to amplify exploration efficiency. Thirdly, an enhanced hierarchical autonomous exploration method for mobile robots is proposed, which incorporates local path planning for seamless navigation around highly promising exploration spots, coupled with global path planning to effectively interconnect various sub–regions. Finally, simulations and field tests have demonstrated that the proposed method explores an unknown indoor environment with a 30.8% reduction in exploration time and a 29.9% reduction in exploration path in comparison with Dynamic Stage Viewpoint Planner. The map constructed in this paper has more accurate details and exploration paths have been shortened to ensure effective exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
含蓄文博完成签到 ,获得积分10
1秒前
积极幻然完成签到 ,获得积分10
2秒前
英姑应助泽山咸采纳,获得10
2秒前
萧水白完成签到,获得积分10
2秒前
aaaaa发布了新的文献求助10
3秒前
woyufengtian完成签到,获得积分10
3秒前
4秒前
rgsrgrs完成签到,获得积分10
4秒前
惊鸿一面完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助30
6秒前
Larluli完成签到,获得积分20
8秒前
8秒前
说话请投币完成签到,获得积分10
8秒前
iNk应助明杰采纳,获得10
9秒前
DS发布了新的文献求助10
9秒前
9秒前
Twonej应助datiancaihaha采纳,获得30
10秒前
CodeCraft应助nuo_11采纳,获得10
10秒前
恋如雪止应助于你无瓜采纳,获得10
11秒前
快乐的妙菱完成签到,获得积分10
11秒前
12秒前
领导范儿应助优美紫槐采纳,获得10
14秒前
大模型应助明杰采纳,获得10
14秒前
王大可发布了新的文献求助10
14秒前
发篇Sci不过分吧完成签到,获得积分10
15秒前
只只发布了新的文献求助10
16秒前
李健的小迷弟应助lyy采纳,获得10
16秒前
清爽的诗云完成签到,获得积分10
17秒前
我是老大应助支凤妖采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
exp应助繁荣的萝莉采纳,获得10
19秒前
20秒前
小恐龙在外太空睡觉完成签到 ,获得积分10
21秒前
阿超完成签到 ,获得积分10
23秒前
BowieHuang应助科研通管家采纳,获得10
23秒前
BowieHuang应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513