A novel autonomous exploration algorithm via LiDAR/IMU SLAM and hierarchical subsystem for mobile robot in unknown indoor environments

激光雷达 计算机科学 惯性测量装置 移动机器人 同时定位和映射 人工智能 计算机视觉 机器人 遥感 地理
作者
Zhilin Gao,Fei Xie,Yihan Huang,Jing Zhao,Haisen Luo,Xinchen Yan,Fei Zhao,Pin Lyu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016307-016307 被引量:5
标识
DOI:10.1088/1361-6501/ad8177
摘要

Abstract Autonomous exploration in unknown environments is an essential capability for mobile robots. The complexity of autonomous exploration, however, means that existing algorithms struggle to balance efficiency and comprehensiveness, causing low mapping accuracy and redundant path planning. To perform accurate and efficient exploration tasks, we have proposed a novel autonomous exploration algorithm via LiDAR/IMU (Inertial Measurement Unit) Simultaneous Localization and Mapping (SLAM) and hierarchical subsystem for mobile robot in unknown environments. Firstly, to enhance mapping accuracy for mobile robot exploration, LiDAR/IMU SLAM is improved with the assistance of backward propagation and iterated Kalman filter, and Bidirectional Rapidly–Exploring Random Trees* (BI–RRT*) is applied for efficient frontier point detection. Secondly, we optimize local path planning by leveraging information theory through perceptual quality evaluation, which is then integrated with global path planning utilizing an enhanced Travelling Salesman Problem solver and a sparse grid map to amplify exploration efficiency. Thirdly, an enhanced hierarchical autonomous exploration method for mobile robots is proposed, which incorporates local path planning for seamless navigation around highly promising exploration spots, coupled with global path planning to effectively interconnect various sub–regions. Finally, simulations and field tests have demonstrated that the proposed method explores an unknown indoor environment with a 30.8% reduction in exploration time and a 29.9% reduction in exploration path in comparison with Dynamic Stage Viewpoint Planner. The map constructed in this paper has more accurate details and exploration paths have been shortened to ensure effective exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小洋完成签到,获得积分10
刚刚
NIHAO完成签到,获得积分10
刚刚
Achhz发布了新的文献求助10
1秒前
LX完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
FadeSv完成签到,获得积分10
2秒前
sulin关注了科研通微信公众号
3秒前
NIHAO发布了新的文献求助10
3秒前
Chris发布了新的文献求助10
4秒前
不舍天真发布了新的文献求助10
4秒前
4秒前
酷波er应助熊猫采纳,获得10
4秒前
年轻迪奥发布了新的文献求助10
6秒前
6秒前
顾矜应助王艺霖采纳,获得10
6秒前
NI发布了新的文献求助10
7秒前
FIREWORK完成签到,获得积分10
7秒前
lwb完成签到,获得积分10
8秒前
8秒前
小洋关注了科研通微信公众号
8秒前
搜集达人应助LBQ采纳,获得10
9秒前
求知的周发布了新的文献求助30
13秒前
13秒前
彩色耳机完成签到,获得积分10
13秒前
平常兰发布了新的文献求助10
14秒前
14秒前
麦地娜发布了新的文献求助10
15秒前
16秒前
烟花应助害羞的天真采纳,获得10
16秒前
EliGolden完成签到,获得积分10
17秒前
义气的翅膀完成签到,获得积分10
18秒前
18秒前
AAA房地产小王完成签到,获得积分10
18秒前
18秒前
情情晴情情完成签到,获得积分10
19秒前
迷路雨寒应助张瑶采纳,获得100
19秒前
cccc发布了新的文献求助10
20秒前
温暖发布了新的文献求助10
20秒前
Lucas应助浅尝离白采纳,获得10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049