亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Autonomous Exploration Algorithm Via LiDAR/IMU SLAM and Hierarchical Subsystem for Mobile Robot in Unknown Indoor Environments

激光雷达 计算机科学 惯性测量装置 移动机器人 同时定位和映射 人工智能 计算机视觉 机器人 遥感 地理
作者
Zhilin Gao,Fei Xie,Yihan Huang,Jing Zhao,Haisen Luo,Xinchen Yan,Fei Zhao,Pin Lyu
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6501/ad8177
摘要

Abstract Autonomous exploration in unknown environments is an essential capability for mobile robots. The complexity of autonomous exploration, however, means that existing algorithms struggle to balance efficiency and comprehensiveness, causing low mapping accuracy and redundant path planning. To perform accurate and efficient exploration tasks, we have proposed a novel autonomous exploration algorithm via LiDAR/IMU Simultaneous Localization and Mapping (SLAM) and hierarchical subsystem for mobile robot in unknown environments. Firstly, to enhance mapping accuracy for mobile robot exploration, LiDAR/IMU SLAM is improved with the assistance of backward propagation and iterated Kalman filter, and Bidirectional Rapidly-Exploring Random Trees* (BI-RRT*) is applied for efficient frontier point detection. Secondly, we optimize local path planning by leveraging information theory through perceptual quality evaluation, which is then integrated with global path planning utilizing an enhanced Travelling Salesman Problem (TSP) solver and a sparse grid map to amplify exploration efficiency. Thirdly, an enhanced hierarchical autonomous exploration method for mobile robots is proposed, which incorporates local path planning for seamless navigation around highly promising exploration spots, coupled with global path planning to effectively interconnect various sub-regions. Finally, simulations and field tests have demonstrated that the proposed method explores an unknown indoor environment with a 30.8% reduction in exploration time and a 29.9% reduction in exploration path in comparison with Dynamic Stage Viewpoint Planner (DSVP). The map constructed in this paper has more accurate details and exploration paths have been shortened to ensure effective exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
聪明念真发布了新的文献求助10
12秒前
lim完成签到 ,获得积分10
17秒前
17秒前
香蕉觅云应助三金采纳,获得10
19秒前
聪明念真完成签到,获得积分20
22秒前
深情安青应助三金采纳,获得10
46秒前
顺心剑身完成签到 ,获得积分10
1分钟前
打打应助mochi采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
mochi发布了新的文献求助10
1分钟前
plucky发布了新的文献求助20
1分钟前
巨型肥猫发布了新的文献求助10
1分钟前
CodeCraft应助三金采纳,获得10
1分钟前
1分钟前
shenqy发布了新的文献求助10
1分钟前
amit_弢完成签到,获得积分20
1分钟前
科研通AI5应助123456采纳,获得10
1分钟前
2分钟前
微弱de胖头完成签到,获得积分20
2分钟前
Ava应助巨型肥猫采纳,获得10
2分钟前
123456完成签到,获得积分10
2分钟前
muum完成签到,获得积分10
2分钟前
2分钟前
123456发布了新的文献求助10
2分钟前
2分钟前
甄茗完成签到 ,获得积分10
2分钟前
灭灭羊发布了新的文献求助10
2分钟前
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得30
2分钟前
morena应助科研通管家采纳,获得20
2分钟前
2分钟前
sarmad完成签到,获得积分10
2分钟前
调研昵称发布了新的文献求助10
2分钟前
plucky完成签到 ,获得积分20
2分钟前
frap完成签到,获得积分0
2分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484408
求助须知:如何正确求助?哪些是违规求助? 3073433
关于积分的说明 9130940
捐赠科研通 2765049
什么是DOI,文献DOI怎么找? 1517559
邀请新用户注册赠送积分活动 702147
科研通“疑难数据库(出版商)”最低求助积分说明 701156