Intelligent mobile robot navigation in unknown and complex environment using reinforcement learning technique

强化学习 计算机科学 移动机器人 机器人 人机交互 人工智能 机器人学习
作者
Ravi Raj,Andrzej Kos
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-72857-3
摘要

The usage of mobile robots (MRs) has expanded dramatically in the last several years across a wide range of industries, including manufacturing, surveillance, healthcare, and warehouse automation. To ensure the efficient and safe operation of these MRs, it is crucial to design effective control strategies that can adapt to changing environments. In this paper, we propose a new technique for controlling MRs using reinforcement learning (RL). Our approach involves mathematical model generation and later training a neural network (NN) to learn a policy for robot control using RL. The policy is learned through trial and error, where MR explores the environment and receives rewards based on its actions. The rewards are designed to encourage the robot to move towards its goal while avoiding obstacles. In this work, a deep Q-learning (QL) agent is used to enable robots to autonomously learn to avoid collisions with obstacles and enhance navigation abilities in an unknown environment. When operating MR independently within an unfamiliar area, a RL model is used to identify the targeted location, and the Deep Q-Network (DQN) is used to navigate to the goal location. We evaluate our approach using a simulation using the Epsilon-Greedy algorithm. The results show that our approach outperforms traditional MR control strategies in terms of both efficiency and safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
干净利落完成签到,获得积分10
1秒前
sx发布了新的文献求助10
1秒前
冷酷的可乐完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
Tina完成签到,获得积分10
2秒前
2秒前
Hohai完成签到,获得积分10
2秒前
啦啦啦发布了新的文献求助10
3秒前
3秒前
樱桃小丸子完成签到,获得积分10
3秒前
打打应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
biomichael完成签到,获得积分10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
情怀应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得20
4秒前
科目三应助科研通管家采纳,获得10
4秒前
小涛完成签到,获得积分10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
椰子在长江送礼物应助o30采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
justsoso完成签到,获得积分10
5秒前
天黑黑完成签到,获得积分10
5秒前
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836