强化学习
计算机科学
移动机器人
机器人
人机交互
人工智能
机器人学习
标识
DOI:10.1038/s41598-024-72857-3
摘要
The usage of mobile robots (MRs) has expanded dramatically in the last several years across a wide range of industries, including manufacturing, surveillance, healthcare, and warehouse automation. To ensure the efficient and safe operation of these MRs, it is crucial to design effective control strategies that can adapt to changing environments. In this paper, we propose a new technique for controlling MRs using reinforcement learning (RL). Our approach involves mathematical model generation and later training a neural network (NN) to learn a policy for robot control using RL. The policy is learned through trial and error, where MR explores the environment and receives rewards based on its actions. The rewards are designed to encourage the robot to move towards its goal while avoiding obstacles. In this work, a deep Q-learning (QL) agent is used to enable robots to autonomously learn to avoid collisions with obstacles and enhance navigation abilities in an unknown environment. When operating MR independently within an unfamiliar area, a RL model is used to identify the targeted location, and the Deep Q-Network (DQN) is used to navigate to the goal location. We evaluate our approach using a simulation using the Epsilon-Greedy algorithm. The results show that our approach outperforms traditional MR control strategies in terms of both efficiency and safety.
科研通智能强力驱动
Strongly Powered by AbleSci AI