Design of a Portable Electronic Nose for Identification of Minced Chicken Meat Adulterated With Soybean Protein Isolate

电子鼻 食品科学 鉴定(生物学) 化学 生物 植物 神经科学
作者
Min Zhou,Chunxia Dai,Joshua Harrington Aheto,Xiaorui Zhang
出处
期刊:Journal of Food Safety [Wiley]
卷期号:44 (5)
标识
DOI:10.1111/jfs.13163
摘要

ABSTRACT The study aimed to develop a portable electronic nose system for detecting adulteration with soybean protein isolate (SPI) in chicken meat. The system mainly consisted of three parts: the gas sensor array, the DSP28335 control board, and the upper computer. The DSP28335 control board, developed using C language, included analog to digital converter (ADC) module, digital output (DO) module, pulse width modulation (PWM) module, controller area network (CAN) module, power module, drive circuit, and so forth. The upper computer, developed using LabVIEW, facilitated user interaction with the user by primarily handling CAN configuration and monitoring, displaying and storing sensor data, temperature and flow data, and sending and monitoring electronic nose commands. The feasibility of the proposed electronic nose for characterizing adulterated chicken meat was tested on six classes of chicken meat that had been adulterated with varied quantities of SPI. The mass fractions of SPI were 0%, 5%, 10%, 15%, 20%, and 25%, respectively. On the basis of odor data from the electronic nose, K‐nearest neighbor (KNN), linear discriminant analysis (LDA), and support vector machine (SVM) were applied to qualitatively distinguish minced chicken meat with different adulteration ratios. The results showed that the SVM model had the best recognition effect. When the best parameters ( c , g ) were c = 16 and g = 1, the accuracy of SVM model was 97.22% and 93.75% in the training and testing sets, respectively. These results demonstrated that the portable electronic nose designed in this paper effectively identifies minced chicken meat under various adulteration conditions, enabling rapid and nondestructive detection of chicken meat adulteration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoliu发布了新的文献求助10
1秒前
大大小小发布了新的文献求助10
2秒前
kkdsseed完成签到,获得积分10
2秒前
Blueyi发布了新的文献求助10
2秒前
一只猪仔777完成签到,获得积分10
3秒前
wstcnsn完成签到,获得积分10
3秒前
3秒前
7秒前
乐乐应助xixi采纳,获得10
8秒前
AnnaTian完成签到,获得积分10
8秒前
8秒前
8秒前
虚幻夜山完成签到,获得积分10
9秒前
monicaj完成签到 ,获得积分10
9秒前
yyq617569158发布了新的文献求助10
10秒前
Vanilla发布了新的文献求助10
11秒前
cwm完成签到,获得积分10
11秒前
华仔应助vivien采纳,获得10
11秒前
凉茶完成签到,获得积分10
12秒前
香蕉觅云应助三石采纳,获得10
12秒前
13秒前
阿宁发布了新的文献求助10
15秒前
15秒前
缥缈从丹发布了新的文献求助10
16秒前
17秒前
酷波er应助大大小小采纳,获得10
17秒前
huang完成签到,获得积分20
19秒前
深情安青应助长情凝丹采纳,获得10
20秒前
21秒前
xixi发布了新的文献求助10
21秒前
Zyk完成签到,获得积分10
23秒前
阳光的芯完成签到,获得积分20
25秒前
25秒前
嗯哼举报饱满一刀求助涉嫌违规
27秒前
MoonFlows应助种一棵星星采纳,获得20
28秒前
welchm完成签到 ,获得积分10
28秒前
白白白发布了新的文献求助10
29秒前
Vanilla完成签到,获得积分10
29秒前
29秒前
鲜艳的沛春完成签到,获得积分10
30秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919