已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing bearing and gear fault diagnosis: A VMD-PSO approach with multisensory signal integration

方位(导航) 断层(地质) 信号(编程语言) 计算机科学 工程类 控制工程 人工智能 地质学 地震学 程序设计语言
作者
Abdel wahhab Lourari,Bilal El Yousfi,Tarak Benkedjouh,Ahmed Bouzar Essaidi,Abdenour Soualhi
出处
期刊:Journal of Vibration and Control [SAGE]
标识
DOI:10.1177/10775463241273842
摘要

In the domain of signal analysis for machinery health monitoring and fault diagnosis, this paper introduces a comprehensive methodology that integrates Variational Mode Decomposition (VMD), Particle Swarm Optimization (PSO), and advanced machine learning techniques. The primary objective of this framework is to establish a robust and precise approach for signal decomposition, determining the optimal number of Intrinsic Mode Functions (IMF), and calculating key indicators, including L2/L1, Hoyer Index, and Geometric Mean Improved Gini Index (GMIGI). The methodology initiates with VMD-based signal decomposition, followed by the utilization of PSO to identify the most appropriate number of IMFs for accurate feature extraction. Subsequently, each IMF’s performance is assessed by evaluating its correlation with the input signal, and the IMF with the highest Pearson coefficient is selected as the primary feature for diagnostic purposes. To ensure the robustness and comparability of these indicators, a standardization process is implemented. The standardized indicators are then employed for machinery fault diagnosis, utilizing a diverse set of machine learning algorithms such as support vector machines and discriminant analysis. The proposed methodology undergoes rigorous validation using vibration, acoustic, and current signals, providing a versatile solution for the condition monitoring and diagnosis of mechanical systems. For model validation, we utilize four datasets comprising two vibrational, one acoustic, and one electrical dataset. The experimental results affirm the effectiveness of our approach in accurately detecting and diagnosing faults, thereby contributing to the reliability and maintenance efficiency of industrial machinery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎明发布了新的文献求助10
1秒前
TTw完成签到,获得积分20
1秒前
2秒前
ruhemann发布了新的文献求助10
4秒前
xioabu发布了新的文献求助10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
zjspidany应助科研通管家采纳,获得10
4秒前
HEIKU应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
HEIKU应助科研通管家采纳,获得10
4秒前
HEIKU应助科研通管家采纳,获得10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
爱静静应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得30
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
5秒前
7秒前
9秒前
10秒前
TTw发布了新的文献求助10
10秒前
香蕉觅云应助菲1208采纳,获得10
10秒前
10秒前
12秒前
京运发布了新的文献求助10
13秒前
细心怜寒发布了新的文献求助10
14秒前
wjm关闭了wjm文献求助
15秒前
情怀应助xioabu采纳,获得10
16秒前
18秒前
WXR完成签到 ,获得积分10
22秒前
赘婿应助ruhemann采纳,获得10
22秒前
23秒前
yik完成签到,获得积分10
23秒前
黄倩发布了新的文献求助10
24秒前
lion_wei发布了新的文献求助10
25秒前
26秒前
菲1208发布了新的文献求助10
26秒前
香蕉觅云应助细心怜寒采纳,获得10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3319028
求助须知:如何正确求助?哪些是违规求助? 2950363
关于积分的说明 8551225
捐赠科研通 2627350
什么是DOI,文献DOI怎么找? 1437716
科研通“疑难数据库(出版商)”最低求助积分说明 666382
邀请新用户注册赠送积分活动 652359