Enhancing bearing and gear fault diagnosis: A VMD-PSO approach with multisensory signal integration

方位(导航) 断层(地质) 信号(编程语言) 计算机科学 工程类 控制工程 人工智能 地质学 地震学 程序设计语言
作者
Abdel wahhab Lourari,Bilal El Yousfi,Tarak Benkedjouh,Ahmed Bouzar Essaidi,Abdenour Soualhi
出处
期刊:Journal of Vibration and Control [SAGE Publishing]
标识
DOI:10.1177/10775463241273842
摘要

In the domain of signal analysis for machinery health monitoring and fault diagnosis, this paper introduces a comprehensive methodology that integrates Variational Mode Decomposition (VMD), Particle Swarm Optimization (PSO), and advanced machine learning techniques. The primary objective of this framework is to establish a robust and precise approach for signal decomposition, determining the optimal number of Intrinsic Mode Functions (IMF), and calculating key indicators, including L2/L1, Hoyer Index, and Geometric Mean Improved Gini Index (GMIGI). The methodology initiates with VMD-based signal decomposition, followed by the utilization of PSO to identify the most appropriate number of IMFs for accurate feature extraction. Subsequently, each IMF’s performance is assessed by evaluating its correlation with the input signal, and the IMF with the highest Pearson coefficient is selected as the primary feature for diagnostic purposes. To ensure the robustness and comparability of these indicators, a standardization process is implemented. The standardized indicators are then employed for machinery fault diagnosis, utilizing a diverse set of machine learning algorithms such as support vector machines and discriminant analysis. The proposed methodology undergoes rigorous validation using vibration, acoustic, and current signals, providing a versatile solution for the condition monitoring and diagnosis of mechanical systems. For model validation, we utilize four datasets comprising two vibrational, one acoustic, and one electrical dataset. The experimental results affirm the effectiveness of our approach in accurately detecting and diagnosing faults, thereby contributing to the reliability and maintenance efficiency of industrial machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Adelais发布了新的文献求助20
刚刚
77777发布了新的文献求助10
1秒前
冰阔落发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
111发布了新的文献求助10
1秒前
3秒前
3秒前
skywalker发布了新的文献求助10
3秒前
3秒前
香蕉觅云应助李牧采纳,获得10
3秒前
4秒前
4秒前
carpybala发布了新的文献求助10
4秒前
5秒前
无花果应助嘉嘉采纳,获得10
5秒前
oooooo完成签到,获得积分10
5秒前
科研通AI6应助文献高手采纳,获得10
5秒前
YJ888发布了新的文献求助10
6秒前
bkagyin应助znsmaqwdy采纳,获得10
6秒前
6秒前
Yanxb发布了新的文献求助10
6秒前
6秒前
顾安完成签到 ,获得积分10
7秒前
情怀应助lz4540采纳,获得10
7秒前
LMW应助玉米之路采纳,获得10
7秒前
7秒前
8秒前
hyominhsu发布了新的文献求助10
9秒前
9秒前
我嘞个豆发布了新的文献求助10
9秒前
可爱的函函应助Cc采纳,获得10
9秒前
前前完成签到,获得积分10
9秒前
10秒前
虚心元绿发布了新的文献求助10
10秒前
11发布了新的文献求助30
10秒前
笑点低的静竹完成签到,获得积分10
11秒前
甜蜜不悔发布了新的文献求助30
12秒前
白若可依发布了新的文献求助10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709