Enhancing bearing and gear fault diagnosis: A VMD-PSO approach with multisensory signal integration

方位(导航) 断层(地质) 信号(编程语言) 计算机科学 工程类 控制工程 人工智能 地质学 地震学 程序设计语言
作者
Abdel wahhab Lourari,Bilal El Yousfi,Tarak Benkedjouh,Ahmed Bouzar Essaidi,Abdenour Soualhi
出处
期刊:Journal of Vibration and Control [SAGE Publishing]
标识
DOI:10.1177/10775463241273842
摘要

In the domain of signal analysis for machinery health monitoring and fault diagnosis, this paper introduces a comprehensive methodology that integrates Variational Mode Decomposition (VMD), Particle Swarm Optimization (PSO), and advanced machine learning techniques. The primary objective of this framework is to establish a robust and precise approach for signal decomposition, determining the optimal number of Intrinsic Mode Functions (IMF), and calculating key indicators, including L2/L1, Hoyer Index, and Geometric Mean Improved Gini Index (GMIGI). The methodology initiates with VMD-based signal decomposition, followed by the utilization of PSO to identify the most appropriate number of IMFs for accurate feature extraction. Subsequently, each IMF’s performance is assessed by evaluating its correlation with the input signal, and the IMF with the highest Pearson coefficient is selected as the primary feature for diagnostic purposes. To ensure the robustness and comparability of these indicators, a standardization process is implemented. The standardized indicators are then employed for machinery fault diagnosis, utilizing a diverse set of machine learning algorithms such as support vector machines and discriminant analysis. The proposed methodology undergoes rigorous validation using vibration, acoustic, and current signals, providing a versatile solution for the condition monitoring and diagnosis of mechanical systems. For model validation, we utilize four datasets comprising two vibrational, one acoustic, and one electrical dataset. The experimental results affirm the effectiveness of our approach in accurately detecting and diagnosing faults, thereby contributing to the reliability and maintenance efficiency of industrial machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YYING完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
可爱飞荷发布了新的文献求助10
2秒前
小二郎应助liuzengzhang666采纳,获得10
2秒前
CodeCraft应助zmy采纳,获得10
3秒前
英姑应助吗喽采纳,获得10
4秒前
包子发布了新的文献求助10
5秒前
菠萝大菠萝完成签到,获得积分10
5秒前
Kakaluote完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
学术完成签到 ,获得积分10
7秒前
FashionBoy应助湖以采纳,获得10
7秒前
FashionBoy应助lixiang采纳,获得10
7秒前
Zutilm完成签到,获得积分10
9秒前
9秒前
随机昵称发布了新的文献求助80
10秒前
踏实青槐发布了新的文献求助10
13秒前
包子完成签到,获得积分10
14秒前
七页禾发布了新的文献求助10
14秒前
充电宝应助54小甜采纳,获得10
15秒前
SYLH应助jueshadi采纳,获得10
16秒前
17秒前
17秒前
狂野白梅发布了新的文献求助10
18秒前
wxd完成签到,获得积分10
20秒前
20秒前
乐乐应助阔达的雁凡采纳,获得10
21秒前
zmy发布了新的文献求助10
23秒前
科研小白发布了新的文献求助30
23秒前
24秒前
amore完成签到,获得积分10
24秒前
缪风华发布了新的文献求助10
24秒前
田様应助七页禾采纳,获得10
25秒前
Owen应助mingzhi采纳,获得10
26秒前
英吉利25发布了新的文献求助10
27秒前
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010682
求助须知:如何正确求助?哪些是违规求助? 3550411
关于积分的说明 11305615
捐赠科研通 3284751
什么是DOI,文献DOI怎么找? 1810846
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499