清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhancing bearing and gear fault diagnosis: A VMD-PSO approach with multisensory signal integration

方位(导航) 断层(地质) 信号(编程语言) 计算机科学 工程类 控制工程 人工智能 地质学 地震学 程序设计语言
作者
Abdel wahhab Lourari,Bilal El Yousfi,Tarak Benkedjouh,Ahmed Bouzar Essaidi,Abdenour Soualhi
出处
期刊:Journal of Vibration and Control [SAGE Publishing]
标识
DOI:10.1177/10775463241273842
摘要

In the domain of signal analysis for machinery health monitoring and fault diagnosis, this paper introduces a comprehensive methodology that integrates Variational Mode Decomposition (VMD), Particle Swarm Optimization (PSO), and advanced machine learning techniques. The primary objective of this framework is to establish a robust and precise approach for signal decomposition, determining the optimal number of Intrinsic Mode Functions (IMF), and calculating key indicators, including L2/L1, Hoyer Index, and Geometric Mean Improved Gini Index (GMIGI). The methodology initiates with VMD-based signal decomposition, followed by the utilization of PSO to identify the most appropriate number of IMFs for accurate feature extraction. Subsequently, each IMF’s performance is assessed by evaluating its correlation with the input signal, and the IMF with the highest Pearson coefficient is selected as the primary feature for diagnostic purposes. To ensure the robustness and comparability of these indicators, a standardization process is implemented. The standardized indicators are then employed for machinery fault diagnosis, utilizing a diverse set of machine learning algorithms such as support vector machines and discriminant analysis. The proposed methodology undergoes rigorous validation using vibration, acoustic, and current signals, providing a versatile solution for the condition monitoring and diagnosis of mechanical systems. For model validation, we utilize four datasets comprising two vibrational, one acoustic, and one electrical dataset. The experimental results affirm the effectiveness of our approach in accurately detecting and diagnosing faults, thereby contributing to the reliability and maintenance efficiency of industrial machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助ukmy采纳,获得10
1秒前
简单十三完成签到,获得积分10
4秒前
9秒前
朱一龙完成签到,获得积分10
11秒前
14秒前
zhanzhanzhan完成签到,获得积分10
21秒前
yindi1991完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
41秒前
我是老大应助忧郁的火车采纳,获得10
55秒前
领导范儿应助忧郁的火车采纳,获得10
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
1分钟前
ukmy完成签到,获得积分20
1分钟前
ukmy发布了新的文献求助10
1分钟前
ww完成签到,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
滨滨发布了新的文献求助10
3分钟前
Lucas应助十分十分佳采纳,获得10
3分钟前
烟花应助童严柯采纳,获得10
3分钟前
456完成签到,获得积分10
4分钟前
hwen1998发布了新的文献求助10
4分钟前
h0jian09完成签到,获得积分10
4分钟前
4分钟前
是是是完成签到 ,获得积分10
4分钟前
4分钟前
hwen1998完成签到 ,获得积分10
4分钟前
4分钟前
童严柯发布了新的文献求助10
4分钟前
5分钟前
juan完成签到 ,获得积分10
5分钟前
两个榴莲完成签到,获得积分0
5分钟前
Benhnhk21完成签到,获得积分10
6分钟前
科研通AI5应助要减肥中蓝采纳,获得10
6分钟前
6分钟前
甜蜜海蓝发布了新的文献求助10
6分钟前
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
甜蜜海蓝完成签到,获得积分10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5065519
求助须知:如何正确求助?哪些是违规求助? 4288108
关于积分的说明 13359637
捐赠科研通 4106884
什么是DOI,文献DOI怎么找? 2248899
邀请新用户注册赠送积分活动 1254411
关于科研通互助平台的介绍 1186179