A generalized denoising network LGCT-Net for various types of ESPI wrapped phase patterns

网(多面体) 降噪 相(物质) 计算机科学 数学 人工智能 物理 几何学 量子力学
作者
Hongxuan He,Chen Tang,Le Liu,Liao Zhang,Zhenkun Lei
出处
期刊:Journal of the Optical Society of America [The Optical Society]
卷期号:41 (9): 1664-1664
标识
DOI:10.1364/josaa.527471
摘要

In this paper, we propose a generalized network based on our proposed Local-Global Channel Transformer (LGCT) module for denoising various types of ESPI wrapped phase patterns (including low-density, medium-density, high-density, variable-density, and discontinuous phase patterns). The Conv + BN + ReLU layer consists of convolution (Conv), batch normalization (BN), and the rectified linear unit (Relu) in series. The generalized network LGCT-Net interleaves four LGCT modules with five Conv + BN + ReLU layers in a dense connection manner. We propose the LGCT Module by stacking three Dilated-Group Convolution blocks (DGC block), a Contextual Transformer block (CoT block), and an Efficient Channel Attention block (ECA block). The LGCT module simultaneously leverages the local context extraction capability of convolutions and the powerful global information extraction capability of a transformer. Additionally, it performs feature extraction in both spatial and channel dimensions. We also create a diverse ESPI wrapped phase pattern denoising dataset with various densities, shapes, noise levels, and discontinuity. We successfully train the LGCT-Net without any preprocessing or postprocessing steps. We evaluate the performance of our method on simulated and experimental ESPI wrapped phase patterns with discontinuity and different densities. Then we compare it with previously published denoising methods PEARLS, HDCNN, ADCNN, and DBDNet quantitatively and qualitatively. The results show that our method facilitates the reduction of speckle noise and the enhancement of fine details while preserving structure and shape, outperforming the compared methods. In the end, we apply our method to dynamic measurements of nuclear graphite ESPI phase patterns at different times. And then performing phase unwrapping on the filtered phase patterns, we achieve successful results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助轻松的贞采纳,获得10
刚刚
wz完成签到,获得积分10
1秒前
子川完成签到 ,获得积分10
1秒前
怕孤独的鹭洋完成签到,获得积分10
1秒前
2秒前
耍酷的夏云完成签到,获得积分10
2秒前
laodie发布了新的文献求助10
3秒前
3秒前
小达完成签到,获得积分10
3秒前
nenoaowu发布了新的文献求助10
3秒前
文章要有性价比完成签到,获得积分10
4秒前
俏皮半烟完成签到,获得积分10
4秒前
Aki发布了新的文献求助10
4秒前
111完成签到,获得积分10
6秒前
耗尽完成签到,获得积分10
6秒前
烂漫驳发布了新的文献求助10
8秒前
轻松的贞完成签到,获得积分10
9秒前
李健应助balzacsun采纳,获得10
10秒前
轻松的悟空完成签到 ,获得积分10
12秒前
susan完成签到,获得积分10
13秒前
0029完成签到,获得积分10
15秒前
Aki完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
18秒前
LXR完成签到,获得积分10
20秒前
thchiang发布了新的文献求助10
21秒前
李健应助北城采纳,获得10
21秒前
WDK发布了新的文献求助10
21秒前
22秒前
轻松的贞发布了新的文献求助10
22秒前
医学生Mavis完成签到,获得积分10
24秒前
nextconnie完成签到,获得积分10
24秒前
汉堡包应助yyj采纳,获得10
25秒前
zqh740发布了新的文献求助30
26秒前
27秒前
NexusExplorer应助pharmstudent采纳,获得10
28秒前
熊遇蜜完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824