亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A generalized denoising network LGCT-Net for various types of ESPI wrapped phase patterns

网(多面体) 降噪 相(物质) 计算机科学 数学 人工智能 物理 几何学 量子力学
作者
Hongxuan He,Chen Tang,Le Liu,Liao Zhang,Zhenkun Lei
出处
期刊:Journal of the Optical Society of America [The Optical Society]
卷期号:41 (9): 1664-1664
标识
DOI:10.1364/josaa.527471
摘要

In this paper, we propose a generalized network based on our proposed Local-Global Channel Transformer (LGCT) module for denoising various types of ESPI wrapped phase patterns (including low-density, medium-density, high-density, variable-density, and discontinuous phase patterns). The Conv + BN + ReLU layer consists of convolution (Conv), batch normalization (BN), and the rectified linear unit (Relu) in series. The generalized network LGCT-Net interleaves four LGCT modules with five Conv + BN + ReLU layers in a dense connection manner. We propose the LGCT Module by stacking three Dilated-Group Convolution blocks (DGC block), a Contextual Transformer block (CoT block), and an Efficient Channel Attention block (ECA block). The LGCT module simultaneously leverages the local context extraction capability of convolutions and the powerful global information extraction capability of a transformer. Additionally, it performs feature extraction in both spatial and channel dimensions. We also create a diverse ESPI wrapped phase pattern denoising dataset with various densities, shapes, noise levels, and discontinuity. We successfully train the LGCT-Net without any preprocessing or postprocessing steps. We evaluate the performance of our method on simulated and experimental ESPI wrapped phase patterns with discontinuity and different densities. Then we compare it with previously published denoising methods PEARLS, HDCNN, ADCNN, and DBDNet quantitatively and qualitatively. The results show that our method facilitates the reduction of speckle noise and the enhancement of fine details while preserving structure and shape, outperforming the compared methods. In the end, we apply our method to dynamic measurements of nuclear graphite ESPI phase patterns at different times. And then performing phase unwrapping on the filtered phase patterns, we achieve successful results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
FLMXene发布了新的文献求助10
21秒前
w_sea完成签到 ,获得积分10
24秒前
FLMXene完成签到,获得积分10
38秒前
清爽老九应助Anthology采纳,获得10
44秒前
45秒前
深情安青应助苦逼采纳,获得10
46秒前
大方的从寒完成签到,获得积分10
50秒前
54秒前
田様应助大方的从寒采纳,获得10
55秒前
55秒前
归海梦岚完成签到,获得积分0
55秒前
潇洒绿蕊完成签到,获得积分10
56秒前
英姑应助科研通管家采纳,获得10
58秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
苦逼发布了新的文献求助10
58秒前
NexusExplorer应助马大人..采纳,获得10
59秒前
1分钟前
1分钟前
1分钟前
星愿发布了新的文献求助10
1分钟前
Otter完成签到,获得积分10
1分钟前
1分钟前
1分钟前
领导范儿应助maoy采纳,获得10
1分钟前
轻舟已过万重山完成签到,获得积分10
1分钟前
jsdk发布了新的文献求助10
2分钟前
2分钟前
FashionBoy应助jsdk采纳,获得10
2分钟前
2分钟前
洛洛大方应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
Persistence完成签到,获得积分10
3分钟前
3分钟前
KSDalton完成签到,获得积分10
3分钟前
3分钟前
3分钟前
酷酷一笑发布了新的文献求助10
3分钟前
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314391
求助须知:如何正确求助?哪些是违规求助? 2946633
关于积分的说明 8531115
捐赠科研通 2622350
什么是DOI,文献DOI怎么找? 1434483
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650855