A generalized denoising network LGCT-Net for various types of ESPI wrapped phase patterns

网(多面体) 降噪 相(物质) 计算机科学 数学 人工智能 物理 几何学 量子力学
作者
Hongxuan He,Chen Tang,Le Liu,Liao Zhang,Zhenkun Lei
出处
期刊:Journal of the Optical Society of America [Optica Publishing Group]
卷期号:41 (9): 1664-1664
标识
DOI:10.1364/josaa.527471
摘要

In this paper, we propose a generalized network based on our proposed Local-Global Channel Transformer (LGCT) module for denoising various types of ESPI wrapped phase patterns (including low-density, medium-density, high-density, variable-density, and discontinuous phase patterns). The Conv + BN + ReLU layer consists of convolution (Conv), batch normalization (BN), and the rectified linear unit (Relu) in series. The generalized network LGCT-Net interleaves four LGCT modules with five Conv + BN + ReLU layers in a dense connection manner. We propose the LGCT Module by stacking three Dilated-Group Convolution blocks (DGC block), a Contextual Transformer block (CoT block), and an Efficient Channel Attention block (ECA block). The LGCT module simultaneously leverages the local context extraction capability of convolutions and the powerful global information extraction capability of a transformer. Additionally, it performs feature extraction in both spatial and channel dimensions. We also create a diverse ESPI wrapped phase pattern denoising dataset with various densities, shapes, noise levels, and discontinuity. We successfully train the LGCT-Net without any preprocessing or postprocessing steps. We evaluate the performance of our method on simulated and experimental ESPI wrapped phase patterns with discontinuity and different densities. Then we compare it with previously published denoising methods PEARLS, HDCNN, ADCNN, and DBDNet quantitatively and qualitatively. The results show that our method facilitates the reduction of speckle noise and the enhancement of fine details while preserving structure and shape, outperforming the compared methods. In the end, we apply our method to dynamic measurements of nuclear graphite ESPI phase patterns at different times. And then performing phase unwrapping on the filtered phase patterns, we achieve successful results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助yyydd采纳,获得10
1秒前
牛顿的苹果完成签到,获得积分10
1秒前
scq发布了新的文献求助10
2秒前
科研通AI2S应助ihtw采纳,获得10
2秒前
2秒前
陶醉黑猫完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
香蕉秋柳发布了新的文献求助10
4秒前
holycale完成签到,获得积分10
5秒前
希望天下0贩的0应助He采纳,获得10
5秒前
弘木完成签到,获得积分10
5秒前
6秒前
菠菜发布了新的文献求助10
6秒前
mao12wang发布了新的文献求助10
6秒前
音容完成签到,获得积分10
7秒前
小马甲应助不想看文献采纳,获得10
7秒前
万能图书馆应助chen采纳,获得10
8秒前
8秒前
9秒前
9秒前
皮崇知发布了新的文献求助10
9秒前
10秒前
育三杯清栀完成签到 ,获得积分10
11秒前
香蕉秋柳完成签到,获得积分10
12秒前
ihtw完成签到,获得积分10
13秒前
123完成签到,获得积分10
13秒前
隐形曼青应助葫芦家二娃采纳,获得10
14秒前
CipherSage应助雪山飞龙采纳,获得10
14秒前
14秒前
yyydd发布了新的文献求助10
15秒前
老毛发布了新的文献求助10
15秒前
15秒前
ED应助yciDo采纳,获得10
16秒前
liuhang发布了新的文献求助30
16秒前
16秒前
BLock应助别先生采纳,获得20
16秒前
qiuheng完成签到,获得积分10
16秒前
田様应助暴躁的阁采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958357
求助须知:如何正确求助?哪些是违规求助? 3504636
关于积分的说明 11119121
捐赠科研通 3235826
什么是DOI,文献DOI怎么找? 1788534
邀请新用户注册赠送积分活动 871232
科研通“疑难数据库(出版商)”最低求助积分说明 802600