已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A generalized denoising network LGCT-Net for various types of ESPI wrapped phase patterns

网(多面体) 降噪 相(物质) 计算机科学 数学 人工智能 物理 几何学 量子力学
作者
Hongxuan He,Chen Tang,Le Liu,Liao Zhang,Zhenkun Lei
出处
期刊:Journal of the Optical Society of America [Optica Publishing Group]
卷期号:41 (9): 1664-1664
标识
DOI:10.1364/josaa.527471
摘要

In this paper, we propose a generalized network based on our proposed Local-Global Channel Transformer (LGCT) module for denoising various types of ESPI wrapped phase patterns (including low-density, medium-density, high-density, variable-density, and discontinuous phase patterns). The Conv + BN + ReLU layer consists of convolution (Conv), batch normalization (BN), and the rectified linear unit (Relu) in series. The generalized network LGCT-Net interleaves four LGCT modules with five Conv + BN + ReLU layers in a dense connection manner. We propose the LGCT Module by stacking three Dilated-Group Convolution blocks (DGC block), a Contextual Transformer block (CoT block), and an Efficient Channel Attention block (ECA block). The LGCT module simultaneously leverages the local context extraction capability of convolutions and the powerful global information extraction capability of a transformer. Additionally, it performs feature extraction in both spatial and channel dimensions. We also create a diverse ESPI wrapped phase pattern denoising dataset with various densities, shapes, noise levels, and discontinuity. We successfully train the LGCT-Net without any preprocessing or postprocessing steps. We evaluate the performance of our method on simulated and experimental ESPI wrapped phase patterns with discontinuity and different densities. Then we compare it with previously published denoising methods PEARLS, HDCNN, ADCNN, and DBDNet quantitatively and qualitatively. The results show that our method facilitates the reduction of speckle noise and the enhancement of fine details while preserving structure and shape, outperforming the compared methods. In the end, we apply our method to dynamic measurements of nuclear graphite ESPI phase patterns at different times. And then performing phase unwrapping on the filtered phase patterns, we achieve successful results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GingerF应助科研通管家采纳,获得50
1秒前
GingerF应助科研通管家采纳,获得50
1秒前
GingerF应助科研通管家采纳,获得50
1秒前
浮游应助科研通管家采纳,获得10
1秒前
小冠军完成签到,获得积分10
3秒前
elmacho完成签到 ,获得积分10
5秒前
Qin完成签到,获得积分10
9秒前
Cynthia发布了新的文献求助10
13秒前
GPTea应助临河盗龙采纳,获得50
21秒前
Nn完成签到 ,获得积分10
21秒前
23秒前
25秒前
mimi完成签到,获得积分10
26秒前
27秒前
吴小军发布了新的文献求助10
28秒前
misa完成签到 ,获得积分10
30秒前
超级天磊发布了新的文献求助10
30秒前
Augustines发布了新的文献求助10
31秒前
平常的老头完成签到,获得积分10
32秒前
任性铅笔完成签到 ,获得积分10
33秒前
镜花水月完成签到,获得积分10
38秒前
立青完成签到 ,获得积分10
41秒前
帅气的安柏完成签到,获得积分10
44秒前
传奇3应助xxf采纳,获得10
46秒前
科研fw完成签到 ,获得积分10
47秒前
山山而川完成签到 ,获得积分10
52秒前
YangMengting完成签到 ,获得积分10
55秒前
AUGS酒完成签到,获得积分10
56秒前
耶耶发布了新的文献求助10
56秒前
genius完成签到,获得积分10
1分钟前
Leif完成签到 ,获得积分0
1分钟前
hjc完成签到,获得积分10
1分钟前
1分钟前
自觉汽车完成签到,获得积分10
1分钟前
1分钟前
wanci应助Augustines采纳,获得10
1分钟前
学霸宇大王完成签到,获得积分10
1分钟前
勤奋帅帅完成签到,获得积分10
1分钟前
薛定谔的猫完成签到,获得积分10
1分钟前
btmy16完成签到,获得积分20
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136626
求助须知:如何正确求助?哪些是违规求助? 4336724
关于积分的说明 13510467
捐赠科研通 4174839
什么是DOI,文献DOI怎么找? 2289082
邀请新用户注册赠送积分活动 1289774
关于科研通互助平台的介绍 1231100