Real-time detection system for polishing metal surface defects based on convolutional feature concentration and activation network

增采样 计算机科学 特征(语言学) 人工智能 抛光 模式识别(心理学) 卷积神经网络 计算机视觉 材料科学 图像(数学) 复合材料 哲学 语言学
作者
Zhongliang Lv,Zhenyu Lu,Kewen Xia,Lie Zhang,Hailun Zuo,You-wei Xu,Kang Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:257: 125041-125041
标识
DOI:10.1016/j.eswa.2024.125041
摘要

This study aims to improve the accuracy and efficiency of detecting defects on polished metal surfaces by developing a new detection system. A network model explicitly designed for detecting defects on polished metal surfaces and a convolutional feature concentration and activation network (CFCANet) are proposed in this paper. This model significantly enhances the recognition of tiny defects by introducing a small-target detection head, ensuring high-precision detection results. In addition, the feature concentration and activation (FCA-C2f) module proposed in this study enhances the model's sensitivity to anisotropic features, thereby improving defect detection accuracy. The content-aware reassembly of features (CARAFE) upsampling algorithm is used instead of traditional nearest-neighbour interpolation methods to effectively preserve detailed information and improve the quality and efficiency of upsampling. By optimising the lighting conditions and using composite light source illumination technology, the probabilities of missed detections and false alarms can be reduced. Combined with the CFCANet detection network, the defect detection performance of the proposed method on polished metal surfaces is effectively enhanced. To validate the effectiveness of the proposed method, a new dataset for detecting defects on polished metal surfaces, PMS-DET, was constructed in this study and validated on the NEU-DET dataset. Experimental results show that CFCANet effectively improves the defect detection accuracy on polished metal surfaces, achieving a mAP0.5:0.95 value of 42.4 % on the PMS-DET dataset, an increase of 11.9 %. The model parameters are reduced by 6.7 %, and the detection speed is improved by 28.1 %. Compared with existing detection models, this research method demonstrates significant improvements in detection accuracy, model size and computational efficiency, especially regarding GFLOPs and detection speed, proving its potential application value in practical industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉曼香完成签到 ,获得积分10
1秒前
RW发布了新的文献求助10
2秒前
4秒前
Owen应助张又蓝采纳,获得10
5秒前
结实采蓝完成签到,获得积分10
5秒前
5秒前
6秒前
楠楠发布了新的文献求助10
8秒前
8秒前
思源应助激动的猫咪采纳,获得10
8秒前
gan完成签到,获得积分10
10秒前
li发布了新的文献求助10
10秒前
sfwer发布了新的文献求助10
11秒前
12秒前
13秒前
彭于晏应助TT2022采纳,获得10
14秒前
14秒前
hea完成签到,获得积分10
16秒前
郑雨霏发布了新的文献求助10
16秒前
情怀应助CO2采纳,获得10
16秒前
Yyyy发布了新的文献求助10
17秒前
滴滴滴滴发布了新的文献求助10
18秒前
早早完成签到,获得积分10
19秒前
zZ发布了新的文献求助10
21秒前
21秒前
ding应助禹依白采纳,获得10
23秒前
香蕉觅云应助淋漓尽致采纳,获得10
25秒前
Diamond完成签到 ,获得积分10
25秒前
27秒前
27秒前
28秒前
完美世界应助NJQ采纳,获得10
28秒前
张又蓝发布了新的文献求助10
28秒前
silence发布了新的文献求助10
30秒前
NexusExplorer应助wang采纳,获得10
31秒前
32秒前
研友_VZG7GZ应助整齐凌萱采纳,获得10
32秒前
叩桥不渡完成签到,获得积分10
32秒前
CO2发布了新的文献求助10
33秒前
33秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790122
关于积分的说明 7793698
捐赠科研通 2446483
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601102