Real-time detection system for polishing metal surface defects based on convolutional feature concentration and activation network

增采样 计算机科学 特征(语言学) 人工智能 抛光 模式识别(心理学) 卷积神经网络 计算机视觉 材料科学 图像(数学) 语言学 哲学 复合材料
作者
Zhongliang Lv,Zhenyu Lu,Kewen Xia,Lie Zhang,Hailun Zuo,You-wei Xu,Kang Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:257: 125041-125041 被引量:4
标识
DOI:10.1016/j.eswa.2024.125041
摘要

This study aims to improve the accuracy and efficiency of detecting defects on polished metal surfaces by developing a new detection system. A network model explicitly designed for detecting defects on polished metal surfaces and a convolutional feature concentration and activation network (CFCANet) are proposed in this paper. This model significantly enhances the recognition of tiny defects by introducing a small-target detection head, ensuring high-precision detection results. In addition, the feature concentration and activation (FCA-C2f) module proposed in this study enhances the model's sensitivity to anisotropic features, thereby improving defect detection accuracy. The content-aware reassembly of features (CARAFE) upsampling algorithm is used instead of traditional nearest-neighbour interpolation methods to effectively preserve detailed information and improve the quality and efficiency of upsampling. By optimising the lighting conditions and using composite light source illumination technology, the probabilities of missed detections and false alarms can be reduced. Combined with the CFCANet detection network, the defect detection performance of the proposed method on polished metal surfaces is effectively enhanced. To validate the effectiveness of the proposed method, a new dataset for detecting defects on polished metal surfaces, PMS-DET, was constructed in this study and validated on the NEU-DET dataset. Experimental results show that CFCANet effectively improves the defect detection accuracy on polished metal surfaces, achieving a mAP0.5:0.95 value of 42.4 % on the PMS-DET dataset, an increase of 11.9 %. The model parameters are reduced by 6.7 %, and the detection speed is improved by 28.1 %. Compared with existing detection models, this research method demonstrates significant improvements in detection accuracy, model size and computational efficiency, especially regarding GFLOPs and detection speed, proving its potential application value in practical industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjh11143发布了新的文献求助10
1秒前
执着大山完成签到,获得积分10
1秒前
周周一个发布了新的文献求助10
1秒前
1秒前
haowang1135发布了新的文献求助10
1秒前
吴裕玲发布了新的文献求助10
2秒前
Ljx应助跳跳采纳,获得10
2秒前
2秒前
2秒前
ding应助再一采纳,获得10
2秒前
传奇3应助幽默尔蓝采纳,获得10
3秒前
3秒前
诗瑜发布了新的文献求助10
3秒前
3秒前
寒冷威完成签到,获得积分10
3秒前
jialiang发布了新的文献求助10
4秒前
汉堡包应助bt4567采纳,获得10
4秒前
百事可乐发布了新的文献求助10
4秒前
ding应助务实蜻蜓采纳,获得10
4秒前
PlanetaryLayer完成签到,获得积分10
5秒前
5秒前
6秒前
小黄鸭发布了新的文献求助10
6秒前
英俊的铭应助Kaiwei采纳,获得10
7秒前
儒雅致远发布了新的文献求助10
7秒前
sweat发布了新的文献求助10
7秒前
GG完成签到 ,获得积分10
7秒前
7秒前
小木安华完成签到,获得积分20
8秒前
华杰完成签到,获得积分10
8秒前
che66完成签到,获得积分20
9秒前
9秒前
Blue发布了新的文献求助10
9秒前
9秒前
思源应助aaaaa采纳,获得10
9秒前
隐形曼青应助晰默采纳,获得10
9秒前
9秒前
FashionBoy应助wyh798采纳,获得10
10秒前
激情的初阳完成签到,获得积分10
10秒前
华仔应助陶醉的灵枫采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389