Real-time detection system for polishing metal surface defects based on convolutional feature concentration and activation network

增采样 计算机科学 特征(语言学) 人工智能 抛光 模式识别(心理学) 卷积神经网络 计算机视觉 材料科学 图像(数学) 语言学 哲学 复合材料
作者
Zhongliang Lv,Zhenyu Lu,Kewen Xia,Lie Zhang,Hailun Zuo,You-wei Xu,Kang Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:257: 125041-125041 被引量:4
标识
DOI:10.1016/j.eswa.2024.125041
摘要

This study aims to improve the accuracy and efficiency of detecting defects on polished metal surfaces by developing a new detection system. A network model explicitly designed for detecting defects on polished metal surfaces and a convolutional feature concentration and activation network (CFCANet) are proposed in this paper. This model significantly enhances the recognition of tiny defects by introducing a small-target detection head, ensuring high-precision detection results. In addition, the feature concentration and activation (FCA-C2f) module proposed in this study enhances the model's sensitivity to anisotropic features, thereby improving defect detection accuracy. The content-aware reassembly of features (CARAFE) upsampling algorithm is used instead of traditional nearest-neighbour interpolation methods to effectively preserve detailed information and improve the quality and efficiency of upsampling. By optimising the lighting conditions and using composite light source illumination technology, the probabilities of missed detections and false alarms can be reduced. Combined with the CFCANet detection network, the defect detection performance of the proposed method on polished metal surfaces is effectively enhanced. To validate the effectiveness of the proposed method, a new dataset for detecting defects on polished metal surfaces, PMS-DET, was constructed in this study and validated on the NEU-DET dataset. Experimental results show that CFCANet effectively improves the defect detection accuracy on polished metal surfaces, achieving a mAP0.5:0.95 value of 42.4 % on the PMS-DET dataset, an increase of 11.9 %. The model parameters are reduced by 6.7 %, and the detection speed is improved by 28.1 %. Compared with existing detection models, this research method demonstrates significant improvements in detection accuracy, model size and computational efficiency, especially regarding GFLOPs and detection speed, proving its potential application value in practical industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Research完成签到 ,获得积分10
6秒前
15秒前
19秒前
flyingpig发布了新的文献求助10
19秒前
huanir99发布了新的文献求助80
21秒前
时光不旧只是满尘灰完成签到 ,获得积分10
23秒前
xu发布了新的文献求助10
24秒前
Singularity完成签到,获得积分0
26秒前
辛勤的喉完成签到 ,获得积分10
26秒前
贝贝完成签到 ,获得积分10
28秒前
zozox完成签到 ,获得积分10
43秒前
等待小丸子完成签到,获得积分10
44秒前
ChatGPT发布了新的文献求助10
55秒前
57秒前
仰望星空发布了新的文献求助10
1分钟前
IShowSpeed完成签到,获得积分10
1分钟前
偷得浮生半日闲完成签到,获得积分10
1分钟前
忆茶戏完成签到 ,获得积分10
1分钟前
carl完成签到 ,获得积分10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得30
1分钟前
传奇3应助科研通管家采纳,获得30
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
害怕的小刺猬完成签到 ,获得积分10
1分钟前
认真的奇异果完成签到 ,获得积分10
1分钟前
顾矜应助Li采纳,获得10
1分钟前
木木完成签到 ,获得积分10
1分钟前
qianci2009完成签到,获得积分0
1分钟前
LINDENG2004完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
甘sir完成签到 ,获得积分10
1分钟前
Li发布了新的文献求助10
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
华仔应助Li采纳,获得10
2分钟前
t铁核桃1985完成签到 ,获得积分0
2分钟前
含蓄的静竹完成签到 ,获得积分10
2分钟前
忧心的藏鸟完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650009
关于积分的说明 14689401
捐赠科研通 4591860
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463118