Real-time detection system for polishing metal surface defects based on convolutional feature concentration and activation network

增采样 计算机科学 特征(语言学) 人工智能 抛光 模式识别(心理学) 卷积神经网络 计算机视觉 材料科学 图像(数学) 复合材料 哲学 语言学
作者
Zhongliang Lv,Zhenyu Lu,Kewen Xia,Lie Zhang,Hailun Zuo,You-wei Xu,Kang Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:257: 125041-125041
标识
DOI:10.1016/j.eswa.2024.125041
摘要

This study aims to improve the accuracy and efficiency of detecting defects on polished metal surfaces by developing a new detection system. A network model explicitly designed for detecting defects on polished metal surfaces and a convolutional feature concentration and activation network (CFCANet) are proposed in this paper. This model significantly enhances the recognition of tiny defects by introducing a small-target detection head, ensuring high-precision detection results. In addition, the feature concentration and activation (FCA-C2f) module proposed in this study enhances the model's sensitivity to anisotropic features, thereby improving defect detection accuracy. The content-aware reassembly of features (CARAFE) upsampling algorithm is used instead of traditional nearest-neighbour interpolation methods to effectively preserve detailed information and improve the quality and efficiency of upsampling. By optimising the lighting conditions and using composite light source illumination technology, the probabilities of missed detections and false alarms can be reduced. Combined with the CFCANet detection network, the defect detection performance of the proposed method on polished metal surfaces is effectively enhanced. To validate the effectiveness of the proposed method, a new dataset for detecting defects on polished metal surfaces, PMS-DET, was constructed in this study and validated on the NEU-DET dataset. Experimental results show that CFCANet effectively improves the defect detection accuracy on polished metal surfaces, achieving a mAP0.5:0.95 value of 42.4 % on the PMS-DET dataset, an increase of 11.9 %. The model parameters are reduced by 6.7 %, and the detection speed is improved by 28.1 %. Compared with existing detection models, this research method demonstrates significant improvements in detection accuracy, model size and computational efficiency, especially regarding GFLOPs and detection speed, proving its potential application value in practical industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贾不可发布了新的文献求助10
1秒前
英俊梦槐发布了新的文献求助30
1秒前
Xu完成签到,获得积分10
2秒前
2秒前
秀丽千山完成签到,获得积分10
2秒前
3秒前
4秒前
哈哈哈哈完成签到,获得积分10
4秒前
沧海泪发布了新的文献求助10
5秒前
小胡先森应助凤凰山采纳,获得10
5秒前
一一完成签到,获得积分10
5秒前
惠惠发布了新的文献求助10
5秒前
shotgod完成签到,获得积分20
6秒前
科研通AI5应助蕾子采纳,获得10
6秒前
happy杨完成签到 ,获得积分10
6秒前
lichaoyes发布了新的文献求助10
6秒前
6秒前
Owen应助通~采纳,获得10
6秒前
封闭货车发布了新的文献求助10
7秒前
7秒前
www发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
shotgod发布了新的文献求助10
9秒前
ling玲完成签到,获得积分10
9秒前
奔奔发布了新的文献求助10
9秒前
SweepingMonk应助虚心盼晴采纳,获得10
10秒前
11秒前
汉堡包应助XXF采纳,获得10
11秒前
wzh完成签到,获得积分10
11秒前
海底落日完成签到,获得积分20
11秒前
12秒前
科研通AI5应助123采纳,获得30
12秒前
烟花应助pi采纳,获得10
13秒前
汉堡包应助小木木壮采纳,获得10
13秒前
13秒前
yl发布了新的文献求助30
13秒前
菲菲呀发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794