清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Real-time detection system for polishing metal surface defects based on convolutional feature concentration and activation network

增采样 计算机科学 特征(语言学) 人工智能 抛光 模式识别(心理学) 卷积神经网络 计算机视觉 材料科学 图像(数学) 语言学 哲学 复合材料
作者
Zhongliang Lv,Zhenyu Lu,Kewen Xia,Lie Zhang,Hailun Zuo,You-wei Xu,Kang Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:257: 125041-125041 被引量:4
标识
DOI:10.1016/j.eswa.2024.125041
摘要

This study aims to improve the accuracy and efficiency of detecting defects on polished metal surfaces by developing a new detection system. A network model explicitly designed for detecting defects on polished metal surfaces and a convolutional feature concentration and activation network (CFCANet) are proposed in this paper. This model significantly enhances the recognition of tiny defects by introducing a small-target detection head, ensuring high-precision detection results. In addition, the feature concentration and activation (FCA-C2f) module proposed in this study enhances the model's sensitivity to anisotropic features, thereby improving defect detection accuracy. The content-aware reassembly of features (CARAFE) upsampling algorithm is used instead of traditional nearest-neighbour interpolation methods to effectively preserve detailed information and improve the quality and efficiency of upsampling. By optimising the lighting conditions and using composite light source illumination technology, the probabilities of missed detections and false alarms can be reduced. Combined with the CFCANet detection network, the defect detection performance of the proposed method on polished metal surfaces is effectively enhanced. To validate the effectiveness of the proposed method, a new dataset for detecting defects on polished metal surfaces, PMS-DET, was constructed in this study and validated on the NEU-DET dataset. Experimental results show that CFCANet effectively improves the defect detection accuracy on polished metal surfaces, achieving a mAP0.5:0.95 value of 42.4 % on the PMS-DET dataset, an increase of 11.9 %. The model parameters are reduced by 6.7 %, and the detection speed is improved by 28.1 %. Compared with existing detection models, this research method demonstrates significant improvements in detection accuracy, model size and computational efficiency, especially regarding GFLOPs and detection speed, proving its potential application value in practical industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
15秒前
32秒前
wanci应助科研通管家采纳,获得10
41秒前
cwanglh完成签到 ,获得积分10
45秒前
zbb123完成签到 ,获得积分10
1分钟前
古卡可可完成签到 ,获得积分10
1分钟前
科目三应助Luke采纳,获得10
2分钟前
自由的鸣凤完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
Luke发布了新的文献求助10
2分钟前
77完成签到 ,获得积分10
2分钟前
两个榴莲完成签到,获得积分0
3分钟前
丘比特应助真实的映寒采纳,获得10
3分钟前
伯赏傲柏完成签到,获得积分20
4分钟前
4分钟前
伯赏傲柏发布了新的文献求助10
4分钟前
KSDalton完成签到,获得积分10
4分钟前
小不点应助忧郁的平安采纳,获得10
5分钟前
无私雅柏完成签到 ,获得积分10
5分钟前
月夜花朝完成签到 ,获得积分10
5分钟前
Yolanda完成签到 ,获得积分10
5分钟前
6分钟前
Orange应助xuan采纳,获得10
6分钟前
南寅发布了新的文献求助10
6分钟前
6分钟前
xuan完成签到,获得积分10
6分钟前
xuan发布了新的文献求助10
6分钟前
lyj完成签到 ,获得积分0
6分钟前
酷酷海豚完成签到,获得积分10
6分钟前
6分钟前
激动的似狮完成签到,获得积分10
6分钟前
lzy完成签到,获得积分10
7分钟前
Jason完成签到,获得积分20
7分钟前
Jason发布了新的文献求助10
7分钟前
情怀应助Jason采纳,获得10
7分钟前
odell完成签到,获得积分10
7分钟前
tt完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599843
求助须知:如何正确求助?哪些是违规求助? 4685587
关于积分的说明 14838670
捐赠科研通 4672110
什么是DOI,文献DOI怎么找? 2538317
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470946