Real-time detection system for polishing metal surface defects based on convolutional feature concentration and activation network

增采样 计算机科学 特征(语言学) 人工智能 抛光 模式识别(心理学) 卷积神经网络 计算机视觉 材料科学 图像(数学) 复合材料 哲学 语言学
作者
Zhongliang Lv,Zhenyu Lu,Kewen Xia,Lie Zhang,Hailun Zuo,You-wei Xu,Kang Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:257: 125041-125041 被引量:4
标识
DOI:10.1016/j.eswa.2024.125041
摘要

This study aims to improve the accuracy and efficiency of detecting defects on polished metal surfaces by developing a new detection system. A network model explicitly designed for detecting defects on polished metal surfaces and a convolutional feature concentration and activation network (CFCANet) are proposed in this paper. This model significantly enhances the recognition of tiny defects by introducing a small-target detection head, ensuring high-precision detection results. In addition, the feature concentration and activation (FCA-C2f) module proposed in this study enhances the model's sensitivity to anisotropic features, thereby improving defect detection accuracy. The content-aware reassembly of features (CARAFE) upsampling algorithm is used instead of traditional nearest-neighbour interpolation methods to effectively preserve detailed information and improve the quality and efficiency of upsampling. By optimising the lighting conditions and using composite light source illumination technology, the probabilities of missed detections and false alarms can be reduced. Combined with the CFCANet detection network, the defect detection performance of the proposed method on polished metal surfaces is effectively enhanced. To validate the effectiveness of the proposed method, a new dataset for detecting defects on polished metal surfaces, PMS-DET, was constructed in this study and validated on the NEU-DET dataset. Experimental results show that CFCANet effectively improves the defect detection accuracy on polished metal surfaces, achieving a mAP0.5:0.95 value of 42.4 % on the PMS-DET dataset, an increase of 11.9 %. The model parameters are reduced by 6.7 %, and the detection speed is improved by 28.1 %. Compared with existing detection models, this research method demonstrates significant improvements in detection accuracy, model size and computational efficiency, especially regarding GFLOPs and detection speed, proving its potential application value in practical industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Archer完成签到,获得积分10
刚刚
tanhaowen发布了新的文献求助10
1秒前
2秒前
学术虫发布了新的文献求助10
2秒前
传奇3应助squirrelcone采纳,获得30
3秒前
3秒前
顺利翠彤发布了新的文献求助10
3秒前
张天雨发布了新的文献求助10
5秒前
充电宝应助秘书处堂采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
一叶知秋应助科研通管家采纳,获得50
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
wlscj应助科研通管家采纳,获得20
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
ZOE应助科研通管家采纳,获得10
6秒前
ZOE应助科研通管家采纳,获得40
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
KongHN发布了新的文献求助30
7秒前
8秒前
ImpPro完成签到 ,获得积分10
8秒前
ho应助缺粥采纳,获得10
9秒前
Tourist应助单纯的蚂蚁采纳,获得10
9秒前
甜甜亦丝完成签到,获得积分20
9秒前
桐桐应助现代半莲采纳,获得10
9秒前
zhl完成签到,获得积分10
9秒前
研友_VZG7GZ应助zzz采纳,获得10
9秒前
10秒前
简单秋完成签到,获得积分20
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342499
求助须知:如何正确求助?哪些是违规求助? 4478349
关于积分的说明 13938989
捐赠科研通 4374885
什么是DOI,文献DOI怎么找? 2403825
邀请新用户注册赠送积分活动 1396427
关于科研通互助平台的介绍 1368562