Real-time detection system for polishing metal surface defects based on convolutional feature concentration and activation network

增采样 计算机科学 特征(语言学) 人工智能 抛光 模式识别(心理学) 卷积神经网络 计算机视觉 材料科学 图像(数学) 语言学 哲学 复合材料
作者
Zhongliang Lv,Zhenyu Lu,Kewen Xia,Lie Zhang,Hailun Zuo,You-wei Xu,Kang Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:257: 125041-125041 被引量:4
标识
DOI:10.1016/j.eswa.2024.125041
摘要

This study aims to improve the accuracy and efficiency of detecting defects on polished metal surfaces by developing a new detection system. A network model explicitly designed for detecting defects on polished metal surfaces and a convolutional feature concentration and activation network (CFCANet) are proposed in this paper. This model significantly enhances the recognition of tiny defects by introducing a small-target detection head, ensuring high-precision detection results. In addition, the feature concentration and activation (FCA-C2f) module proposed in this study enhances the model's sensitivity to anisotropic features, thereby improving defect detection accuracy. The content-aware reassembly of features (CARAFE) upsampling algorithm is used instead of traditional nearest-neighbour interpolation methods to effectively preserve detailed information and improve the quality and efficiency of upsampling. By optimising the lighting conditions and using composite light source illumination technology, the probabilities of missed detections and false alarms can be reduced. Combined with the CFCANet detection network, the defect detection performance of the proposed method on polished metal surfaces is effectively enhanced. To validate the effectiveness of the proposed method, a new dataset for detecting defects on polished metal surfaces, PMS-DET, was constructed in this study and validated on the NEU-DET dataset. Experimental results show that CFCANet effectively improves the defect detection accuracy on polished metal surfaces, achieving a mAP0.5:0.95 value of 42.4 % on the PMS-DET dataset, an increase of 11.9 %. The model parameters are reduced by 6.7 %, and the detection speed is improved by 28.1 %. Compared with existing detection models, this research method demonstrates significant improvements in detection accuracy, model size and computational efficiency, especially regarding GFLOPs and detection speed, proving its potential application value in practical industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
长长的名字完成签到 ,获得积分10
4秒前
斯文败类应助jila采纳,获得10
5秒前
8秒前
Hello应助嘿嘿采纳,获得10
9秒前
可可可可汁完成签到 ,获得积分10
12秒前
无奈的尔容完成签到,获得积分10
14秒前
Xiaohu完成签到,获得积分10
15秒前
XIEQ发布了新的文献求助10
16秒前
16秒前
科研通AI6应助yyanxuemin919采纳,获得10
18秒前
18秒前
20秒前
22秒前
一头猪发布了新的文献求助10
23秒前
Bazinga完成签到,获得积分10
23秒前
嗯嗯嗯完成签到,获得积分10
24秒前
懒鲸鱼给懒鲸鱼的求助进行了留言
24秒前
25秒前
嘿嘿发布了新的文献求助10
25秒前
able完成签到 ,获得积分10
26秒前
27秒前
嗯嗯嗯发布了新的文献求助10
28秒前
丘比特应助度ewf采纳,获得10
29秒前
丽丽丽发布了新的文献求助10
29秒前
yyanxuemin919发布了新的文献求助10
29秒前
蘑菇完成签到 ,获得积分10
32秒前
jam发布了新的文献求助10
32秒前
33秒前
烟花应助ccc采纳,获得10
34秒前
拉长的诗蕊完成签到,获得积分10
34秒前
35秒前
大妙妙完成签到 ,获得积分10
38秒前
38秒前
里里完成签到 ,获得积分10
39秒前
韩妙发布了新的文献求助10
40秒前
科研通AI6应助丽丽丽采纳,获得10
41秒前
太渊完成签到 ,获得积分10
41秒前
ccc发布了新的文献求助10
43秒前
爆米花应助chen采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432