Real-time detection system for polishing metal surface defects based on convolutional feature concentration and activation network

增采样 计算机科学 特征(语言学) 人工智能 抛光 模式识别(心理学) 卷积神经网络 计算机视觉 材料科学 图像(数学) 复合材料 哲学 语言学
作者
Zhongliang Lv,Zhenyu Lu,Kewen Xia,Lie Zhang,Hailun Zuo,You-wei Xu,Kang Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:257: 125041-125041 被引量:4
标识
DOI:10.1016/j.eswa.2024.125041
摘要

This study aims to improve the accuracy and efficiency of detecting defects on polished metal surfaces by developing a new detection system. A network model explicitly designed for detecting defects on polished metal surfaces and a convolutional feature concentration and activation network (CFCANet) are proposed in this paper. This model significantly enhances the recognition of tiny defects by introducing a small-target detection head, ensuring high-precision detection results. In addition, the feature concentration and activation (FCA-C2f) module proposed in this study enhances the model's sensitivity to anisotropic features, thereby improving defect detection accuracy. The content-aware reassembly of features (CARAFE) upsampling algorithm is used instead of traditional nearest-neighbour interpolation methods to effectively preserve detailed information and improve the quality and efficiency of upsampling. By optimising the lighting conditions and using composite light source illumination technology, the probabilities of missed detections and false alarms can be reduced. Combined with the CFCANet detection network, the defect detection performance of the proposed method on polished metal surfaces is effectively enhanced. To validate the effectiveness of the proposed method, a new dataset for detecting defects on polished metal surfaces, PMS-DET, was constructed in this study and validated on the NEU-DET dataset. Experimental results show that CFCANet effectively improves the defect detection accuracy on polished metal surfaces, achieving a mAP0.5:0.95 value of 42.4 % on the PMS-DET dataset, an increase of 11.9 %. The model parameters are reduced by 6.7 %, and the detection speed is improved by 28.1 %. Compared with existing detection models, this research method demonstrates significant improvements in detection accuracy, model size and computational efficiency, especially regarding GFLOPs and detection speed, proving its potential application value in practical industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助风-FBDD采纳,获得10
刚刚
左传琦完成签到 ,获得积分10
1秒前
GR发布了新的文献求助10
2秒前
2秒前
开朗的雁完成签到,获得积分10
2秒前
he发布了新的文献求助10
4秒前
毒蜜蜂乘风归来完成签到,获得积分10
4秒前
zhang_y2发布了新的文献求助10
4秒前
4秒前
小二郎应助DONG采纳,获得10
4秒前
AAA完成签到 ,获得积分10
5秒前
科研通AI6应助舒心语梦采纳,获得10
6秒前
6秒前
史萌发布了新的文献求助10
6秒前
优秀的书萱完成签到,获得积分20
6秒前
7秒前
lisier发布了新的文献求助30
8秒前
无限灵松发布了新的文献求助10
8秒前
lll完成签到,获得积分10
8秒前
10秒前
华仔应助摸鱼鱼采纳,获得10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
Sun完成签到 ,获得积分10
12秒前
天天快乐应助HJJHJH采纳,获得10
12秒前
wzt发布了新的文献求助10
12秒前
12秒前
ding应助GR采纳,获得10
12秒前
临风听暮蝉完成签到,获得积分10
13秒前
共享精神应助zaq777brats采纳,获得10
14秒前
呀呀呀发布了新的文献求助10
14秒前
SAY发布了新的文献求助10
14秒前
ji关闭了ji文献求助
15秒前
一区种子选手完成签到,获得积分10
15秒前
jqs完成签到,获得积分10
15秒前
dhan发布了新的文献求助10
16秒前
16秒前
17秒前
陈功发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521079
求助须知:如何正确求助?哪些是违规求助? 4612571
关于积分的说明 14534355
捐赠科研通 4550094
什么是DOI,文献DOI怎么找? 2493467
邀请新用户注册赠送积分活动 1474588
关于科研通互助平台的介绍 1446154