Self-Supervised Multimodal Learning: A Survey

人工智能 计算机科学 机器学习 模式识别(心理学)
作者
Yongshuo Zong,Oisin Mac Aodha,Timothy Hospedales
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-20 被引量:8
标识
DOI:10.1109/tpami.2024.3429301
摘要

Multimodal learning, which aims to understand and analyze information from multiple modalities, has achieved substantial progress in the supervised regime in recent years. However, the heavy dependence on data paired with expensive human annotations impedes scaling up models. Meanwhile, given the availability of large-scale unannotated data in the wild, self-supervised learning has become an attractive strategy to alleviate the annotation bottleneck. Building on these two directions, self-supervised multimodal learning (SSML) provides ways to learn from raw multimodal data. In this survey, we provide a comprehensive review of the state-of-the-art in SSML, in which we elucidate three major challenges intrinsic to self-supervised learning with multimodal data: (1) learning representations from multimodal data without labels, (2) fusion of different modalities, and (3) learning with unaligned data. We then detail existing solutions to these challenges. Specifically, we consider (1) objectives for learning from multimodal unlabeled data via self-supervision, (2) model architectures from the perspective of different multimodal fusion strategies, and (3) pair-free learning strategies for coarse-grained and fine-grained alignment. We also review real-world applications of SSML algorithms in diverse fields such as healthcare, remote sensing, and machine translation. Finally, we discuss challenges and future directions for SSML. A collection of related resources can be found at: https://github.com/ys-zong/awesome-self-supervised-multimodal-learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助传统的太清采纳,获得30
刚刚
orixero应助www采纳,获得10
1秒前
1秒前
ESJIAN发布了新的文献求助10
2秒前
111发布了新的文献求助10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
shhoing应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
苏卿应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
4秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
斯文败类应助科研通管家采纳,获得100
5秒前
5秒前
5秒前
李健应助七七采纳,获得30
5秒前
zbh完成签到,获得积分10
5秒前
所所应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
xiaotianli完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670942
求助须知:如何正确求助?哪些是违规求助? 3227849
关于积分的说明 9777334
捐赠科研通 2938001
什么是DOI,文献DOI怎么找? 1609736
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959