Wasserstein bi-classifier adversarial learning network for machinery fault diagnostics

对抗制 分类器(UML) 人工智能 计算机科学 机器学习
作者
Yalun Fan,Liang Guo,Yaoxiang Yu,Yi Sun,Tao Luo,Kexin Hou,Weilin Li,Hongli Gao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241266893
摘要

In industrial applications of machinery fault diagnostics, deep learning has been widely adopted to process large amounts of monitoring data. Unfortunately, due to the domain discrepancy, diagnostic models trained with source domain data suffer from degraded diagnostic performance on the target domain. To address this problem, a Wasserstein bi-classifier adversarial learning network (WBALN) is proposed. Specifically, WBALN consists of a feature extractor, two classifiers, and a discrepancy metric based on Wasserstein distance. A two-stream optimization strategy is used in the training process, which involves jointly performing bi-classifier adversarial learning and Wasserstein generative adversarial network (WGAN)-based adversarial learning. In the bi-classifier training stream, a min-max game is conducted between a discrepancy detector composed of two classifiers and the feature extractor to reduce the disparity between these classifiers. In the WGAN-based training stream, a Wasserstein adversarial discrepancy (WAD) is applied in combination with the original classifier as a domain discriminator, which achieves fault diagnosis and distribution alignment through a unified objective. This WAD enables WBALN to achieve sufficient feature alignment using the predicted discriminative information. In addition, the utilization of the nuclear-norm is useful for ensuring the determinacy and diversity of predictions. Except for ordinary domain adaptation, WBALN is also extended for challenging problems about inter-class imbalanced domain adaptation. The performance of the proposed WBALN is verified through multiple experiments on two bearing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分10
1秒前
mimi发布了新的文献求助10
1秒前
Orange应助瞿寒采纳,获得10
2秒前
2秒前
贝贝贝完成签到,获得积分10
2秒前
2秒前
xsl完成签到 ,获得积分20
3秒前
liuliuliu发布了新的文献求助10
3秒前
温暖笑容完成签到,获得积分10
4秒前
十二个完成签到,获得积分10
4秒前
4秒前
哈哈哈发布了新的文献求助10
7秒前
凉城予梦完成签到,获得积分10
9秒前
龅牙苏发布了新的文献求助10
10秒前
11秒前
12秒前
科研通AI2S应助倦梦还采纳,获得10
13秒前
zj-3333333发布了新的文献求助10
13秒前
大磊完成签到,获得积分10
14秒前
15秒前
jinan完成签到,获得积分10
15秒前
共享精神应助mimi采纳,获得10
16秒前
16秒前
迅速泽洋发布了新的文献求助10
17秒前
福明明完成签到,获得积分10
18秒前
玖梦发布了新的文献求助10
19秒前
19秒前
19秒前
coco234完成签到,获得积分10
20秒前
20秒前
20秒前
子不语完成签到 ,获得积分10
21秒前
调皮毛衣完成签到,获得积分10
21秒前
23秒前
华仔应助玖梦采纳,获得10
24秒前
瞿寒发布了新的文献求助10
24秒前
leonieliu发布了新的文献求助150
24秒前
25秒前
nini发布了新的文献求助10
25秒前
科研人发布了新的文献求助10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138986
求助须知:如何正确求助?哪些是违规求助? 2789907
关于积分的说明 7793124
捐赠科研通 2446296
什么是DOI,文献DOI怎么找? 1301017
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096