Wasserstein bi-classifier adversarial learning network for machinery fault diagnostics

对抗制 分类器(UML) 人工智能 计算机科学 机器学习
作者
Yalun Fan,Liang Guo,Yaoxiang Yu,Yi Sun,Tao Luo,Kexin Hou,Weilin Li,Hongli Gao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:24 (6): 3363-3381 被引量:2
标识
DOI:10.1177/14759217241266893
摘要

In industrial applications of machinery fault diagnostics, deep learning has been widely adopted to process large amounts of monitoring data. Unfortunately, due to the domain discrepancy, diagnostic models trained with source domain data suffer from degraded diagnostic performance on the target domain. To address this problem, a Wasserstein bi-classifier adversarial learning network (WBALN) is proposed. Specifically, WBALN consists of a feature extractor, two classifiers, and a discrepancy metric based on Wasserstein distance. A two-stream optimization strategy is used in the training process, which involves jointly performing bi-classifier adversarial learning and Wasserstein generative adversarial network (WGAN)-based adversarial learning. In the bi-classifier training stream, a min-max game is conducted between a discrepancy detector composed of two classifiers and the feature extractor to reduce the disparity between these classifiers. In the WGAN-based training stream, a Wasserstein adversarial discrepancy (WAD) is applied in combination with the original classifier as a domain discriminator, which achieves fault diagnosis and distribution alignment through a unified objective. This WAD enables WBALN to achieve sufficient feature alignment using the predicted discriminative information. In addition, the utilization of the nuclear-norm is useful for ensuring the determinacy and diversity of predictions. Except for ordinary domain adaptation, WBALN is also extended for challenging problems about inter-class imbalanced domain adaptation. The performance of the proposed WBALN is verified through multiple experiments on two bearing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
old赵应助无心的行云采纳,获得10
1秒前
艾雪发布了新的文献求助10
2秒前
2秒前
2秒前
nuclear1002应助肚子饿了采纳,获得10
3秒前
李健应助背后的涵菱采纳,获得10
4秒前
yunlei发布了新的文献求助10
4秒前
qcj发布了新的文献求助10
4秒前
5秒前
852应助Royalll采纳,获得10
5秒前
YY发布了新的文献求助10
6秒前
米龙完成签到,获得积分10
7秒前
7秒前
科研通AI6.1应助ljh采纳,获得10
7秒前
舒适的万言完成签到,获得积分10
8秒前
鱼鱼子发布了新的文献求助10
8秒前
8秒前
Phoo发布了新的文献求助10
8秒前
我是老大应助君打豆采纳,获得10
8秒前
Amuro完成签到,获得积分10
8秒前
Zoe完成签到,获得积分10
9秒前
9秒前
慕青应助怕孤单的惜梦采纳,获得10
9秒前
9秒前
9秒前
QQ发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
李萌萌完成签到 ,获得积分10
9秒前
彭于晏应助芬栀采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
小马甲应助勤恳易谙采纳,获得10
11秒前
bkagyin应助yunlei采纳,获得10
11秒前
义气饼干完成签到,获得积分10
12秒前
Owen应助QG采纳,获得10
12秒前
rain完成签到,获得积分10
12秒前
小二郎应助BouncyTree采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106