Wasserstein bi-classifier adversarial learning network for machinery fault diagnostics

对抗制 分类器(UML) 人工智能 计算机科学 机器学习
作者
Yalun Fan,Liang Guo,Yaoxiang Yu,Yi Sun,Tao Luo,Kexin Hou,Weilin Li,Hongli Gao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241266893
摘要

In industrial applications of machinery fault diagnostics, deep learning has been widely adopted to process large amounts of monitoring data. Unfortunately, due to the domain discrepancy, diagnostic models trained with source domain data suffer from degraded diagnostic performance on the target domain. To address this problem, a Wasserstein bi-classifier adversarial learning network (WBALN) is proposed. Specifically, WBALN consists of a feature extractor, two classifiers, and a discrepancy metric based on Wasserstein distance. A two-stream optimization strategy is used in the training process, which involves jointly performing bi-classifier adversarial learning and Wasserstein generative adversarial network (WGAN)-based adversarial learning. In the bi-classifier training stream, a min-max game is conducted between a discrepancy detector composed of two classifiers and the feature extractor to reduce the disparity between these classifiers. In the WGAN-based training stream, a Wasserstein adversarial discrepancy (WAD) is applied in combination with the original classifier as a domain discriminator, which achieves fault diagnosis and distribution alignment through a unified objective. This WAD enables WBALN to achieve sufficient feature alignment using the predicted discriminative information. In addition, the utilization of the nuclear-norm is useful for ensuring the determinacy and diversity of predictions. Except for ordinary domain adaptation, WBALN is also extended for challenging problems about inter-class imbalanced domain adaptation. The performance of the proposed WBALN is verified through multiple experiments on two bearing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的小迷弟应助sun采纳,获得10
刚刚
Jzhang应助liyuchen采纳,获得10
刚刚
魏伯安发布了新的文献求助30
刚刚
jjjjjj发布了新的文献求助30
2秒前
3秒前
伯赏诗霜发布了新的文献求助10
3秒前
糟糕的鹏飞完成签到 ,获得积分10
4秒前
4秒前
欢呼凡旋完成签到,获得积分10
5秒前
韩邹光完成签到,获得积分10
7秒前
xg发布了新的文献求助10
7秒前
8秒前
dktrrrr完成签到,获得积分10
8秒前
季生完成签到,获得积分10
11秒前
徐徐完成签到,获得积分10
11秒前
12秒前
12秒前
haku完成签到,获得积分10
14秒前
可爱的函函应助laodie采纳,获得10
16秒前
Singularity应助忆楠采纳,获得10
17秒前
18秒前
请叫我风吹麦浪应助PengHu采纳,获得30
19秒前
jjjjjj完成签到,获得积分10
19秒前
凝子老师发布了新的文献求助10
21秒前
21秒前
橙子fy16_发布了新的文献求助10
23秒前
cookie完成签到,获得积分10
23秒前
柒柒的小熊完成签到,获得积分10
24秒前
24秒前
Hello应助萌之痴痴采纳,获得10
25秒前
hahaer完成签到,获得积分10
27秒前
领导范儿应助失眠虔纹采纳,获得10
28秒前
29秒前
Owen应助凝子老师采纳,获得10
32秒前
32秒前
南宫炽滔完成签到 ,获得积分10
34秒前
34秒前
丘比特应助飞羽采纳,获得10
35秒前
沙拉发布了新的文献求助10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849