Wasserstein bi-classifier adversarial learning network for machinery fault diagnostics

对抗制 分类器(UML) 人工智能 计算机科学 机器学习
作者
Yalun Fan,Liang Guo,Yaoxiang Yu,Yi Sun,Tao Luo,Kexin Hou,Weilin Li,Hongli Gao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241266893
摘要

In industrial applications of machinery fault diagnostics, deep learning has been widely adopted to process large amounts of monitoring data. Unfortunately, due to the domain discrepancy, diagnostic models trained with source domain data suffer from degraded diagnostic performance on the target domain. To address this problem, a Wasserstein bi-classifier adversarial learning network (WBALN) is proposed. Specifically, WBALN consists of a feature extractor, two classifiers, and a discrepancy metric based on Wasserstein distance. A two-stream optimization strategy is used in the training process, which involves jointly performing bi-classifier adversarial learning and Wasserstein generative adversarial network (WGAN)-based adversarial learning. In the bi-classifier training stream, a min-max game is conducted between a discrepancy detector composed of two classifiers and the feature extractor to reduce the disparity between these classifiers. In the WGAN-based training stream, a Wasserstein adversarial discrepancy (WAD) is applied in combination with the original classifier as a domain discriminator, which achieves fault diagnosis and distribution alignment through a unified objective. This WAD enables WBALN to achieve sufficient feature alignment using the predicted discriminative information. In addition, the utilization of the nuclear-norm is useful for ensuring the determinacy and diversity of predictions. Except for ordinary domain adaptation, WBALN is also extended for challenging problems about inter-class imbalanced domain adaptation. The performance of the proposed WBALN is verified through multiple experiments on two bearing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心悦SCI完成签到,获得积分10
刚刚
张向向完成签到 ,获得积分10
1秒前
稳重乌冬面完成签到 ,获得积分10
1秒前
嘻嘻我完成签到,获得积分10
4秒前
代桃发布了新的文献求助10
5秒前
5秒前
陈_Ccc完成签到 ,获得积分10
7秒前
wp4455777完成签到,获得积分10
7秒前
醉熏的菲鹰完成签到 ,获得积分10
7秒前
栗子完成签到,获得积分10
13秒前
研友_VZGVzn完成签到,获得积分10
15秒前
Criminology34应助青稞人采纳,获得10
17秒前
代桃完成签到,获得积分10
19秒前
风-FBDD完成签到,获得积分10
19秒前
Asumita完成签到,获得积分10
20秒前
优雅芷波完成签到 ,获得积分10
21秒前
wwww发布了新的文献求助10
23秒前
24秒前
xiaoliu完成签到,获得积分10
25秒前
kyt_vip完成签到,获得积分10
28秒前
甜甜的平蓝完成签到 ,获得积分10
28秒前
小树完成签到 ,获得积分10
30秒前
去小岛上流浪完成签到,获得积分10
31秒前
文与武完成签到 ,获得积分10
36秒前
在水一方应助科研通管家采纳,获得10
39秒前
烟花应助科研通管家采纳,获得10
39秒前
39秒前
NexusExplorer应助科研通管家采纳,获得10
39秒前
祁灵枫完成签到,获得积分10
41秒前
特图图应助Brave采纳,获得30
42秒前
CWC完成签到,获得积分10
43秒前
优美的莹芝完成签到,获得积分10
45秒前
盛意完成签到,获得积分10
46秒前
47秒前
Orange应助peili采纳,获得10
48秒前
2025顺顺利利完成签到 ,获得积分10
48秒前
Jerry完成签到 ,获得积分10
49秒前
月夕完成签到 ,获得积分10
50秒前
微雨若,,完成签到 ,获得积分10
51秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325651
求助须知:如何正确求助?哪些是违规求助? 4466021
关于积分的说明 13895204
捐赠科研通 4358353
什么是DOI,文献DOI怎么找? 2394037
邀请新用户注册赠送积分活动 1387459
关于科研通互助平台的介绍 1358320