已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Wasserstein bi-classifier adversarial learning network for machinery fault diagnostics

对抗制 分类器(UML) 人工智能 计算机科学 机器学习
作者
Yalun Fan,Liang Guo,Yaoxiang Yu,Yi Sun,Tao Luo,Kexin Hou,Weilin Li,Hongli Gao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241266893
摘要

In industrial applications of machinery fault diagnostics, deep learning has been widely adopted to process large amounts of monitoring data. Unfortunately, due to the domain discrepancy, diagnostic models trained with source domain data suffer from degraded diagnostic performance on the target domain. To address this problem, a Wasserstein bi-classifier adversarial learning network (WBALN) is proposed. Specifically, WBALN consists of a feature extractor, two classifiers, and a discrepancy metric based on Wasserstein distance. A two-stream optimization strategy is used in the training process, which involves jointly performing bi-classifier adversarial learning and Wasserstein generative adversarial network (WGAN)-based adversarial learning. In the bi-classifier training stream, a min-max game is conducted between a discrepancy detector composed of two classifiers and the feature extractor to reduce the disparity between these classifiers. In the WGAN-based training stream, a Wasserstein adversarial discrepancy (WAD) is applied in combination with the original classifier as a domain discriminator, which achieves fault diagnosis and distribution alignment through a unified objective. This WAD enables WBALN to achieve sufficient feature alignment using the predicted discriminative information. In addition, the utilization of the nuclear-norm is useful for ensuring the determinacy and diversity of predictions. Except for ordinary domain adaptation, WBALN is also extended for challenging problems about inter-class imbalanced domain adaptation. The performance of the proposed WBALN is verified through multiple experiments on two bearing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正直的新筠完成签到,获得积分10
1秒前
1秒前
归海浩阑完成签到,获得积分10
1秒前
2秒前
clhoxvpze完成签到 ,获得积分10
2秒前
Harlotte完成签到 ,获得积分10
4秒前
4秒前
5秒前
共享精神应助pengtao919采纳,获得10
8秒前
阿邱发布了新的文献求助10
9秒前
momo应助正直的新筠采纳,获得10
10秒前
情怀应助正直的新筠采纳,获得10
10秒前
江月年完成签到 ,获得积分10
12秒前
Smiling完成签到 ,获得积分10
12秒前
111完成签到 ,获得积分10
26秒前
Sunny完成签到 ,获得积分10
28秒前
33秒前
古铜完成签到 ,获得积分10
33秒前
YanK发布了新的文献求助10
39秒前
39秒前
领导范儿应助lizigongzhu采纳,获得10
40秒前
万能图书馆应助YanK采纳,获得10
41秒前
冷先森EPC完成签到,获得积分10
42秒前
44秒前
45秒前
YanK完成签到,获得积分20
47秒前
shuhaha完成签到,获得积分10
50秒前
开朗小兔子完成签到,获得积分10
52秒前
共享精神应助qiu采纳,获得10
53秒前
58秒前
zhuxuanfeng发布了新的文献求助10
1分钟前
烟花应助hxt采纳,获得10
1分钟前
1分钟前
生动丑应助科研通管家采纳,获得10
1分钟前
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
吱吱吱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
随性随缘随命完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989989
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256053
捐赠科研通 3270900
什么是DOI,文献DOI怎么找? 1805105
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216