Interpretable machine learning model for predicting long-term cardiovascular mortality risk in chronic kidney disease patients using SHAP explainers

医学 肾脏疾病 期限(时间) 疾病 心脏病学 内科学 重症监护医学 量子力学 物理
作者
Wei Wu,Yingying Guo,Ying Mo,Chunhong Jia,Uwe J.F. Tietge
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.3253
摘要

Abstract Background Patients with chronic kidney disease (CKD) exhibited a pronounced burden of cardiac mortality. However, early prediction of cardiovascular mortality risk in CKD patients remains an unmet medical need. Purpose This study aimed to evaluate the performance of machine learning (ML) algorithms and identify the most influential factors in predicting long-term cardiac mortality among CKD patients. Methods Six ML models were developed, with the most effective one chosen for predicting and categorising patients into high-risk and low-risk groups based on the maximal Youden’s index. Differences in survival rates were assessed using the log-rank test on Kaplan-Meier curves. Cox regression analysis was employed to investigate the relationship between ML-predicted risk scores and mortality. Furthermore, the SHapley Additive exPlanations (SHAP) method was implemented to provide personalised explanations for model decisions. Results The auto-encoder (AE) model achieved the highest AUC of 0.94, with a sensitivity of 80.95% and specificity of 96.34%. Compared to individuals in low-risk group, those in high-risk group exhibited a significantly elevated risk of cardiovascular mortality (adjusted hazard ratio [HR]: 48.24; P <0.001). According to the SHAP model, age, C-reactive protein, blood urea nitrogen and hypertension were identified as the four most influential factors in the AE model. Conclusions Our study successfully developed an AE machine learning model for predicting 10-year cardiovascular mortality among CKD patients. The combination of ML model and SHAP aids doctors in understanding key features in the model, improving their insight into decision-making related to disease severity assessment, thus facilitating early preventive strategies in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luming完成签到,获得积分10
刚刚
1秒前
坚定的跳跳糖完成签到 ,获得积分10
2秒前
CLMY完成签到,获得积分10
2秒前
3秒前
咸鱼发布了新的文献求助10
3秒前
3秒前
甜甜亦丝发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助50
4秒前
5秒前
chenfeng发布了新的文献求助30
5秒前
parrowxg完成签到,获得积分10
6秒前
7秒前
orixero应助夏xx采纳,获得10
7秒前
盼盼527完成签到,获得积分10
8秒前
nissy完成签到,获得积分10
9秒前
11发布了新的文献求助10
10秒前
刺五加发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
OOYWZEHNN发布了新的文献求助10
12秒前
bq完成签到,获得积分10
13秒前
AJoe发布了新的文献求助50
15秒前
库库写论文完成签到,获得积分10
16秒前
空写乐发布了新的文献求助30
17秒前
双生客完成签到,获得积分10
18秒前
OOYWZEHNN完成签到,获得积分10
19秒前
21秒前
量子星尘发布了新的文献求助50
22秒前
23秒前
领导范儿应助AJoe采纳,获得10
24秒前
nissy发布了新的文献求助20
24秒前
科研通AI6应助幽默的宛白采纳,获得10
26秒前
26秒前
夏xx发布了新的文献求助10
27秒前
Lucas应助天真的迎天采纳,获得10
27秒前
orixero应助甜甜亦丝采纳,获得10
28秒前
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920461
求助须知:如何正确求助?哪些是违规求助? 4192039
关于积分的说明 13020047
捐赠科研通 3962876
什么是DOI,文献DOI怎么找? 2172323
邀请新用户注册赠送积分活动 1190156
关于科研通互助平台的介绍 1098997