Interpretable machine learning model for predicting long-term cardiovascular mortality risk in chronic kidney disease patients using SHAP explainers

医学 肾脏疾病 期限(时间) 疾病 心脏病学 内科学 重症监护医学 量子力学 物理
作者
Wei Wu,Yingying Guo,Ying Mo,Chunhong Jia,Uwe J.F. Tietge
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.3253
摘要

Abstract Background Patients with chronic kidney disease (CKD) exhibited a pronounced burden of cardiac mortality. However, early prediction of cardiovascular mortality risk in CKD patients remains an unmet medical need. Purpose This study aimed to evaluate the performance of machine learning (ML) algorithms and identify the most influential factors in predicting long-term cardiac mortality among CKD patients. Methods Six ML models were developed, with the most effective one chosen for predicting and categorising patients into high-risk and low-risk groups based on the maximal Youden’s index. Differences in survival rates were assessed using the log-rank test on Kaplan-Meier curves. Cox regression analysis was employed to investigate the relationship between ML-predicted risk scores and mortality. Furthermore, the SHapley Additive exPlanations (SHAP) method was implemented to provide personalised explanations for model decisions. Results The auto-encoder (AE) model achieved the highest AUC of 0.94, with a sensitivity of 80.95% and specificity of 96.34%. Compared to individuals in low-risk group, those in high-risk group exhibited a significantly elevated risk of cardiovascular mortality (adjusted hazard ratio [HR]: 48.24; P <0.001). According to the SHAP model, age, C-reactive protein, blood urea nitrogen and hypertension were identified as the four most influential factors in the AE model. Conclusions Our study successfully developed an AE machine learning model for predicting 10-year cardiovascular mortality among CKD patients. The combination of ML model and SHAP aids doctors in understanding key features in the model, improving their insight into decision-making related to disease severity assessment, thus facilitating early preventive strategies in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐唐完成签到,获得积分10
刚刚
活力的泥猴桃完成签到 ,获得积分10
2秒前
8秒前
小蘑菇应助xhy采纳,获得10
11秒前
夏姬宁静完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
桂鱼完成签到 ,获得积分10
19秒前
Cell完成签到 ,获得积分10
25秒前
asdwind完成签到,获得积分10
27秒前
SDS完成签到 ,获得积分10
35秒前
甜甜圈完成签到 ,获得积分10
39秒前
linci完成签到,获得积分10
40秒前
白凌风完成签到 ,获得积分10
43秒前
45秒前
511完成签到 ,获得积分10
47秒前
Canma完成签到 ,获得积分10
48秒前
量子星尘发布了新的文献求助10
53秒前
迷人绿柏完成签到 ,获得积分10
55秒前
fxy完成签到 ,获得积分10
59秒前
ycc完成签到,获得积分10
1分钟前
popo6150完成签到 ,获得积分10
1分钟前
李健的粉丝团团长应助xxl3采纳,获得10
1分钟前
王波完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得30
1分钟前
tang完成签到,获得积分10
1分钟前
qianci2009完成签到,获得积分0
1分钟前
三杠完成签到 ,获得积分10
1分钟前
康康完成签到 ,获得积分10
1分钟前
Docsiwen完成签到 ,获得积分10
1分钟前
拼搏的羊青完成签到,获得积分10
1分钟前
cinnamonbrd完成签到,获得积分10
1分钟前
燕儿完成签到 ,获得积分10
1分钟前
jintian完成签到 ,获得积分10
1分钟前
胡杨树2006完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
坦率雪枫完成签到 ,获得积分10
2分钟前
2分钟前
嗯嗯完成签到 ,获得积分10
2分钟前
2分钟前
23333完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910669
求助须知:如何正确求助?哪些是违规求助? 4186400
关于积分的说明 12999449
捐赠科研通 3953919
什么是DOI,文献DOI怎么找? 2168175
邀请新用户注册赠送积分活动 1186604
关于科研通互助平台的介绍 1093837