Interpretable machine learning model for predicting long-term cardiovascular mortality risk in chronic kidney disease patients using SHAP explainers

医学 肾脏疾病 期限(时间) 疾病 心脏病学 内科学 重症监护医学 量子力学 物理
作者
Wei Wu,Yingying Guo,Ying Mo,Chunhong Jia,Uwe J.F. Tietge
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.3253
摘要

Abstract Background Patients with chronic kidney disease (CKD) exhibited a pronounced burden of cardiac mortality. However, early prediction of cardiovascular mortality risk in CKD patients remains an unmet medical need. Purpose This study aimed to evaluate the performance of machine learning (ML) algorithms and identify the most influential factors in predicting long-term cardiac mortality among CKD patients. Methods Six ML models were developed, with the most effective one chosen for predicting and categorising patients into high-risk and low-risk groups based on the maximal Youden’s index. Differences in survival rates were assessed using the log-rank test on Kaplan-Meier curves. Cox regression analysis was employed to investigate the relationship between ML-predicted risk scores and mortality. Furthermore, the SHapley Additive exPlanations (SHAP) method was implemented to provide personalised explanations for model decisions. Results The auto-encoder (AE) model achieved the highest AUC of 0.94, with a sensitivity of 80.95% and specificity of 96.34%. Compared to individuals in low-risk group, those in high-risk group exhibited a significantly elevated risk of cardiovascular mortality (adjusted hazard ratio [HR]: 48.24; P <0.001). According to the SHAP model, age, C-reactive protein, blood urea nitrogen and hypertension were identified as the four most influential factors in the AE model. Conclusions Our study successfully developed an AE machine learning model for predicting 10-year cardiovascular mortality among CKD patients. The combination of ML model and SHAP aids doctors in understanding key features in the model, improving their insight into decision-making related to disease severity assessment, thus facilitating early preventive strategies in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高的坤完成签到 ,获得积分10
1秒前
zzzqqq完成签到,获得积分10
1秒前
hsm完成签到,获得积分10
2秒前
所所应助11111采纳,获得10
3秒前
Eton完成签到,获得积分10
3秒前
开心的西瓜完成签到,获得积分10
3秒前
clone2012完成签到,获得积分10
5秒前
shuangyanli完成签到,获得积分10
7秒前
YK完成签到,获得积分10
7秒前
luoxuezhiyin完成签到,获得积分10
9秒前
9秒前
Raki完成签到,获得积分10
9秒前
9秒前
123完成签到,获得积分10
10秒前
清新的翠完成签到,获得积分10
10秒前
柒咩咩完成签到 ,获得积分10
10秒前
缥缈的初阳完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
Tree完成签到 ,获得积分10
11秒前
yan完成签到,获得积分10
11秒前
子书辞完成签到,获得积分10
11秒前
zhuling完成签到,获得积分10
11秒前
荡乎宇宙如虚舟完成签到,获得积分10
12秒前
rh1006完成签到,获得积分10
12秒前
覃纪隆完成签到,获得积分10
13秒前
小螃蟹完成签到,获得积分10
14秒前
chengqin完成签到 ,获得积分10
14秒前
14秒前
15秒前
ttyhtg完成签到,获得积分10
15秒前
留无影完成签到,获得积分10
15秒前
完美的鹤完成签到,获得积分10
16秒前
愉快书琴发布了新的文献求助10
16秒前
cc完成签到,获得积分10
16秒前
16秒前
ppat5012完成签到 ,获得积分10
17秒前
JinwenShi完成签到,获得积分10
18秒前
追寻芮完成签到,获得积分10
18秒前
Tree发布了新的文献求助10
19秒前
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259