Interpretable machine learning model for predicting long-term cardiovascular mortality risk in chronic kidney disease patients using SHAP explainers

医学 肾脏疾病 期限(时间) 疾病 心脏病学 内科学 重症监护医学 量子力学 物理
作者
Wei Wu,Yingying Guo,Ying Mo,Chunhong Jia,Uwe J.F. Tietge
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.3253
摘要

Abstract Background Patients with chronic kidney disease (CKD) exhibited a pronounced burden of cardiac mortality. However, early prediction of cardiovascular mortality risk in CKD patients remains an unmet medical need. Purpose This study aimed to evaluate the performance of machine learning (ML) algorithms and identify the most influential factors in predicting long-term cardiac mortality among CKD patients. Methods Six ML models were developed, with the most effective one chosen for predicting and categorising patients into high-risk and low-risk groups based on the maximal Youden’s index. Differences in survival rates were assessed using the log-rank test on Kaplan-Meier curves. Cox regression analysis was employed to investigate the relationship between ML-predicted risk scores and mortality. Furthermore, the SHapley Additive exPlanations (SHAP) method was implemented to provide personalised explanations for model decisions. Results The auto-encoder (AE) model achieved the highest AUC of 0.94, with a sensitivity of 80.95% and specificity of 96.34%. Compared to individuals in low-risk group, those in high-risk group exhibited a significantly elevated risk of cardiovascular mortality (adjusted hazard ratio [HR]: 48.24; P <0.001). According to the SHAP model, age, C-reactive protein, blood urea nitrogen and hypertension were identified as the four most influential factors in the AE model. Conclusions Our study successfully developed an AE machine learning model for predicting 10-year cardiovascular mortality among CKD patients. The combination of ML model and SHAP aids doctors in understanding key features in the model, improving their insight into decision-making related to disease severity assessment, thus facilitating early preventive strategies in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三愿发布了新的文献求助10
1秒前
1秒前
江月渡完成签到,获得积分10
1秒前
汉堡包应助jackiewang采纳,获得10
2秒前
有魅力棉花糖完成签到,获得积分10
2秒前
小芳儿发布了新的文献求助10
3秒前
Jasper应助淡漠采纳,获得10
3秒前
4秒前
Luobing完成签到,获得积分10
4秒前
5秒前
hadern发布了新的文献求助10
5秒前
6秒前
汤锐完成签到,获得积分10
6秒前
7秒前
7秒前
fsylld233完成签到,获得积分10
7秒前
饱满绮玉W完成签到,获得积分20
7秒前
8秒前
8秒前
胡图图完成签到,获得积分10
9秒前
9秒前
明亮的映天完成签到,获得积分10
9秒前
高兴的幻竹完成签到,获得积分10
10秒前
悠悠完成签到,获得积分10
11秒前
kk发布了新的文献求助10
11秒前
脑洞疼应助hadern采纳,获得10
11秒前
熊玉然发布了新的文献求助10
12秒前
饱满绮玉W发布了新的文献求助10
13秒前
鲤鱼初柳发布了新的文献求助10
14秒前
15秒前
16秒前
kuiuLinvk完成签到,获得积分10
17秒前
华仔应助北川采纳,获得10
17秒前
17秒前
Orange应助echo采纳,获得10
18秒前
马明旋发布了新的文献求助10
20秒前
21秒前
faefasfae发布了新的文献求助30
22秒前
俏皮的雨泽完成签到,获得积分10
22秒前
22秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919