Penetrative Fracture Behavior of Monolayer Graphene Oxide: Nanoscale Experiment and Molecular Dynamics Simulation

石墨烯 分子动力学 纳米尺度 氧化物 材料科学 单层 化学物理 纳米技术 动力学(音乐) 统计物理学 物理 化学 计算化学 冶金 声学
作者
Miki Kajihara,Shunsuke Sakuma,Yusuke Nakao,Ryo Ichikawa,Akio Yonezu
出处
期刊:Journal of Physics D [IOP Publishing]
标识
DOI:10.1088/1361-6463/ad7b4d
摘要

Abstract Graphene, a two-dimensional material, is expected to be employed as a next-generation component for structural and functional applications because of its light weight and excellent mechanical properties. For applications requiring lightness and impact resistance, preventing penetrative damage upon particle impact is critical for applications in mechanical protection. However, graphene is known to have high defect sensitivity. Graphene oxide (GO) may be a better candidate, as functional groups (e.g., hydroxy and epoxy groups) bonded to the C–C network in GO result in better deformability, ductility, and durability compared to graphene. For mechanical applications, it is crucial to understand the fracture behavior, especially the penetrative fracture behavior, of GO membranes. This study characterizes the penetration behavior and fracture morphology of GO membranes subjected to particle impact. Nanoscale experiments were conducted using an atomic force microscope and laser-induced particle impact test for GO. These material testing methods employ nanoscale spheres to induce particle penetration, with the former experiment conducted under quasi-static loading and the latter under dynamic loading. Additionally, molecular dynamics simulations were performed to elucidate the fracture mechanisms of GO. Finally, cyclic fatigue experiments and simulations revealed that GO’s ductility provides resistance to catastrophic failure, indicating its durability. These comprehensive investigations provide valuable insights into the fracture properties of GO membranes under impact penetration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangyu发布了新的文献求助10
2秒前
领导范儿应助既然采纳,获得10
2秒前
2秒前
5秒前
wangyu完成签到,获得积分10
7秒前
9秒前
11秒前
勤劳晓亦完成签到,获得积分10
11秒前
11秒前
14秒前
Hao发布了新的文献求助10
15秒前
Nic发布了新的文献求助10
16秒前
聂珩完成签到,获得积分10
16秒前
17秒前
勤劳晓亦发布了新的文献求助10
19秒前
聂珩发布了新的文献求助10
21秒前
23秒前
ding应助殷启维采纳,获得30
24秒前
25秒前
情怀应助高贵逍遥采纳,获得10
25秒前
一一完成签到,获得积分10
26秒前
敏感的靳应助yy采纳,获得10
27秒前
拨云见日完成签到,获得积分10
28秒前
一一发布了新的文献求助10
29秒前
29秒前
30秒前
Nic完成签到,获得积分20
31秒前
深深深海完成签到,获得积分10
33秒前
自信筮发布了新的文献求助10
34秒前
eason发布了新的文献求助10
36秒前
37秒前
听思念渐近完成签到,获得积分10
41秒前
香蕉觅云应助hui采纳,获得10
42秒前
HiDasiy完成签到 ,获得积分10
43秒前
蒋时晏应助睡不醒的xx采纳,获得20
45秒前
suijinichen完成签到 ,获得积分10
45秒前
46秒前
49秒前
50秒前
fei完成签到 ,获得积分10
51秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2997401
求助须知:如何正确求助?哪些是违规求助? 2657886
关于积分的说明 7194651
捐赠科研通 2293291
什么是DOI,文献DOI怎么找? 1215887
科研通“疑难数据库(出版商)”最低求助积分说明 593350
版权声明 592825