Targeted next-generation sequencing - a promising approach in the diagnosis of Mycobacterium tuberculosis and drug resistance

结核分枝杆菌 抗药性 肺结核 医学 药品 DNA测序 病毒学 计算生物学 微生物学 生物 遗传学 药理学 基因 病理
作者
Xiaocui Wu,Guangkun Tan,Chunlei Sun,Yang Wang,Jinghui Yang,Chunqiu Wu,Chaohui Hu,Fangyou Yu
出处
期刊:Infection [Springer Nature]
标识
DOI:10.1007/s15010-024-02411-w
摘要

Targeted next-generation sequencing (tNGS) offers a high-throughput, culture-independent approach that delivers a comprehensive resistance profile in a significantly shorter turn-around time, making it promising in enhancing tuberculosis (TB) diagnosis and informing treatment decisions. This study aims to evaluate the performance of tNGS in the TB diagnosis and drug resistance detection of Mycobacterium tuberculosis (MTB) using MTB clinical isolates and bronchoalveolar lavage fluid (BALF) samples. A total of 143 MTB clinical isolates were assessed, tNGS, phenotypic antimicrobial susceptibility testing (AST), and AST based on whole genome sequencing (WGS) exhibited high concordance rates, averaging 95.10% and 97.05%. Among 158 BALF samples, culture, Xpert MTB/RIF, and tNGS reported 29, 70 and 111 positives, respectively. In the confirmed cases with etiological evidence (smears, cultures, or molecular test), the positive rate of tNGS (73/83, 87.95%) was higher than that of Xpert MTB (67/83, 80.72%). Additionally, 45% (27/60) of clinically diagnosed cases (with imaging or immunological evidence) were positive for tNGS. Further validation on the discrepant results between tNGS and Xpert MTB/RIF with droplet digital PCR (ddPCR) yielded 35 positives, tNGS detected all, and Xpert MTB/RIF only identified 6 positives. In conclusion, tNGS demonstrates robust and rapid performance in the identification of MTB and its associated drug resistance, and can be directly applied to clinical samples, positioning it as a promising approach for laboratory testing of tuberculosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
格--发布了新的文献求助10
刚刚
小乔应助耷耷采纳,获得10
刚刚
1秒前
1秒前
Yy发布了新的文献求助10
1秒前
3秒前
princecoof发布了新的文献求助10
4秒前
4秒前
不安平凡发布了新的文献求助10
4秒前
nanyuan123发布了新的文献求助10
5秒前
sdd发布了新的文献求助10
5秒前
周凡淇发布了新的文献求助10
5秒前
酷波er应助666采纳,获得10
5秒前
5秒前
英俊的铭应助方法采纳,获得10
6秒前
6秒前
希望天下0贩的0应助grc采纳,获得10
6秒前
6秒前
酷炫白筠完成签到,获得积分20
7秒前
qolke发布了新的文献求助50
7秒前
Orange应助wl采纳,获得30
9秒前
科研通AI5应助能HJY采纳,获得10
9秒前
PRY发布了新的文献求助10
9秒前
yummy发布了新的文献求助10
9秒前
9秒前
烟花应助过时的热狗采纳,获得10
10秒前
QH完成签到,获得积分20
10秒前
cherrychou发布了新的文献求助10
10秒前
11秒前
高大代容发布了新的文献求助10
11秒前
文艺薯片完成签到,获得积分10
12秒前
13秒前
在水一方应助panfan采纳,获得10
13秒前
活力科研人完成签到,获得积分10
13秒前
方囧完成签到,获得积分10
13秒前
13秒前
注意脚下关注了科研通微信公众号
14秒前
hans完成签到,获得积分10
14秒前
SAINT发布了新的文献求助10
14秒前
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483356
求助须知:如何正确求助?哪些是违规求助? 3072736
关于积分的说明 9127609
捐赠科研通 2764309
什么是DOI,文献DOI怎么找? 1517091
邀请新用户注册赠送积分活动 701898
科研通“疑难数据库(出版商)”最低求助积分说明 700770