Targeted next-generation sequencing - a promising approach in the diagnosis of Mycobacterium tuberculosis and drug resistance

结核分枝杆菌 抗药性 肺结核 医学 药品 DNA测序 病毒学 计算生物学 微生物学 生物 遗传学 药理学 基因 病理
作者
Xiaocui Wu,Guangkun Tan,Chunlei Sun,Yang Wang,Jinghui Yang,Chunqiu Wu,Chaohui Hu,Fangyou Yu
出处
期刊:Infection [Springer Nature]
卷期号:53 (3): 967-979 被引量:10
标识
DOI:10.1007/s15010-024-02411-w
摘要

Targeted next-generation sequencing (tNGS) offers a high-throughput, culture-independent approach that delivers a comprehensive resistance profile in a significantly shorter turn-around time, making it promising in enhancing tuberculosis (TB) diagnosis and informing treatment decisions. This study aims to evaluate the performance of tNGS in the TB diagnosis and drug resistance detection of Mycobacterium tuberculosis (MTB) using MTB clinical isolates and bronchoalveolar lavage fluid (BALF) samples. A total of 143 MTB clinical isolates were assessed, tNGS, phenotypic antimicrobial susceptibility testing (AST), and AST based on whole genome sequencing (WGS) exhibited high concordance rates, averaging 95.10% and 97.05%. Among 158 BALF samples, culture, Xpert MTB/RIF, and tNGS reported 29, 70 and 111 positives, respectively. In the confirmed cases with etiological evidence (smears, cultures, or molecular test), the positive rate of tNGS (73/83, 87.95%) was higher than that of Xpert MTB (67/83, 80.72%). Additionally, 45% (27/60) of clinically diagnosed cases (with imaging or immunological evidence) were positive for tNGS. Further validation on the discrepant results between tNGS and Xpert MTB/RIF with droplet digital PCR (ddPCR) yielded 35 positives, tNGS detected all, and Xpert MTB/RIF only identified 6 positives. In conclusion, tNGS demonstrates robust and rapid performance in the identification of MTB and its associated drug resistance, and can be directly applied to clinical samples, positioning it as a promising approach for laboratory testing of tuberculosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mickiller发布了新的文献求助10
1秒前
柯夫子完成签到,获得积分10
2秒前
2秒前
正直小土豆完成签到,获得积分10
2秒前
4秒前
Hello应助52251013106采纳,获得10
4秒前
星辉发布了新的文献求助10
5秒前
曾珍发布了新的文献求助10
5秒前
5秒前
fengfeng完成签到 ,获得积分10
5秒前
6秒前
LLT完成签到,获得积分20
7秒前
8秒前
9秒前
Ace发布了新的文献求助10
9秒前
lizhiqian2024发布了新的文献求助10
9秒前
asdfzxcv应助小王爱喝可乐采纳,获得20
9秒前
完美世界应助Hangerli采纳,获得10
9秒前
10秒前
五氧化二磷完成签到,获得积分10
10秒前
领导范儿应助ell采纳,获得10
11秒前
花痴的电灯泡完成签到,获得积分10
11秒前
12秒前
ding应助shouyi123采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
包女士发布了新的文献求助10
13秒前
研友_LMNqrn完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
bkagyin应助当代采纳,获得10
14秒前
dhn完成签到,获得积分10
14秒前
情怀应助173678采纳,获得10
14秒前
快乐的青柏完成签到,获得积分0
15秒前
15秒前
Owen应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
慢慢发布了新的文献求助10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得30
16秒前
y9gyn_37应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665926
求助须知:如何正确求助?哪些是违规求助? 4878759
关于积分的说明 15115809
捐赠科研通 4825184
什么是DOI,文献DOI怎么找? 2583119
邀请新用户注册赠送积分活动 1537092
关于科研通互助平台的介绍 1495480