结核分枝杆菌
抗药性
肺结核
医学
药品
DNA测序
病毒学
计算生物学
微生物学
生物
遗传学
药理学
基因
病理
作者
Xiaocui Wu,Guangkun Tan,Chunlei Sun,Yang Wang,Jinghui Yang,Chunqiu Wu,Chaohui Hu,Fangyou Yu
出处
期刊:Infection
[Springer Science+Business Media]
日期:2024-10-17
被引量:2
标识
DOI:10.1007/s15010-024-02411-w
摘要
Targeted next-generation sequencing (tNGS) offers a high-throughput, culture-independent approach that delivers a comprehensive resistance profile in a significantly shorter turn-around time, making it promising in enhancing tuberculosis (TB) diagnosis and informing treatment decisions. This study aims to evaluate the performance of tNGS in the TB diagnosis and drug resistance detection of Mycobacterium tuberculosis (MTB) using MTB clinical isolates and bronchoalveolar lavage fluid (BALF) samples. A total of 143 MTB clinical isolates were assessed, tNGS, phenotypic antimicrobial susceptibility testing (AST), and AST based on whole genome sequencing (WGS) exhibited high concordance rates, averaging 95.10% and 97.05%. Among 158 BALF samples, culture, Xpert MTB/RIF, and tNGS reported 29, 70 and 111 positives, respectively. In the confirmed cases with etiological evidence (smears, cultures, or molecular test), the positive rate of tNGS (73/83, 87.95%) was higher than that of Xpert MTB (67/83, 80.72%). Additionally, 45% (27/60) of clinically diagnosed cases (with imaging or immunological evidence) were positive for tNGS. Further validation on the discrepant results between tNGS and Xpert MTB/RIF with droplet digital PCR (ddPCR) yielded 35 positives, tNGS detected all, and Xpert MTB/RIF only identified 6 positives. In conclusion, tNGS demonstrates robust and rapid performance in the identification of MTB and its associated drug resistance, and can be directly applied to clinical samples, positioning it as a promising approach for laboratory testing of tuberculosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI