Targeted next-generation sequencing - a promising approach in the diagnosis of Mycobacterium tuberculosis and drug resistance

结核分枝杆菌 抗药性 肺结核 医学 药品 DNA测序 病毒学 计算生物学 微生物学 生物 遗传学 药理学 基因 病理
作者
Xiaocui Wu,Guangkun Tan,Chunlei Sun,Yang Wang,Jinghui Yang,Chunqiu Wu,Chaohui Hu,Fangyou Yu
出处
期刊:Infection [Springer Nature]
卷期号:53 (3): 967-979 被引量:10
标识
DOI:10.1007/s15010-024-02411-w
摘要

Targeted next-generation sequencing (tNGS) offers a high-throughput, culture-independent approach that delivers a comprehensive resistance profile in a significantly shorter turn-around time, making it promising in enhancing tuberculosis (TB) diagnosis and informing treatment decisions. This study aims to evaluate the performance of tNGS in the TB diagnosis and drug resistance detection of Mycobacterium tuberculosis (MTB) using MTB clinical isolates and bronchoalveolar lavage fluid (BALF) samples. A total of 143 MTB clinical isolates were assessed, tNGS, phenotypic antimicrobial susceptibility testing (AST), and AST based on whole genome sequencing (WGS) exhibited high concordance rates, averaging 95.10% and 97.05%. Among 158 BALF samples, culture, Xpert MTB/RIF, and tNGS reported 29, 70 and 111 positives, respectively. In the confirmed cases with etiological evidence (smears, cultures, or molecular test), the positive rate of tNGS (73/83, 87.95%) was higher than that of Xpert MTB (67/83, 80.72%). Additionally, 45% (27/60) of clinically diagnosed cases (with imaging or immunological evidence) were positive for tNGS. Further validation on the discrepant results between tNGS and Xpert MTB/RIF with droplet digital PCR (ddPCR) yielded 35 positives, tNGS detected all, and Xpert MTB/RIF only identified 6 positives. In conclusion, tNGS demonstrates robust and rapid performance in the identification of MTB and its associated drug resistance, and can be directly applied to clinical samples, positioning it as a promising approach for laboratory testing of tuberculosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
墨染完成签到 ,获得积分10
刚刚
1秒前
2秒前
神经蛙发布了新的文献求助20
4秒前
Akim应助玉米也会爆采纳,获得20
5秒前
5秒前
英姑应助郭嘉都有人用采纳,获得10
6秒前
Gleaming完成签到,获得积分0
6秒前
沫笙发布了新的文献求助10
8秒前
司忆发布了新的文献求助10
9秒前
11秒前
小林完成签到 ,获得积分10
11秒前
11秒前
科研通AI2S应助科研小锄头采纳,获得10
12秒前
木子李发布了新的文献求助10
13秒前
lu完成签到,获得积分10
14秒前
14秒前
kuxiaolei完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
16秒前
16秒前
11完成签到,获得积分10
18秒前
18秒前
maozl完成签到 ,获得积分10
19秒前
紧张的谷槐完成签到,获得积分10
19秒前
惊鸿一面发布了新的文献求助10
20秒前
Listen发布了新的文献求助10
21秒前
花开富贵发布了新的文献求助10
21秒前
dkx发布了新的文献求助10
22秒前
23秒前
清瑜完成签到,获得积分10
23秒前
23秒前
香蕉觅云应助徐枘采纳,获得10
24秒前
zhy发布了新的文献求助10
25秒前
miraitowa完成签到,获得积分10
25秒前
25秒前
George Will完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613426
求助须知:如何正确求助?哪些是违规求助? 4698635
关于积分的说明 14898394
捐赠科研通 4736224
什么是DOI,文献DOI怎么找? 2547047
邀请新用户注册赠送积分活动 1511004
关于科研通互助平台的介绍 1473546