萜烯
萜类
尼罗利多
生物化学
化学
生物
植物
精油
芳樟醇
作者
Jian Zhong,Yu-Yuan Chen,Huajin Shi,Tongjun Zhou,Chen Wang,Ziyu Guo,Yilin Liang,Qixiang Zhang,Ming Sun
标识
DOI:10.1016/j.ijbiomac.2024.135377
摘要
C. aromaticum is widely cultivated for its aromatic, medicinal, and tea-applicable properties, earning the nickname 'lavender in composite'. Terpenoids are the major compounds of C. aromaticum fragrance. To reveal the molecular mechanisms of terpenoid biosynthesis in C. aromaticum, NGS and SMRT sequencing were employed to identify the key terpene synthase genes. A total of 59,903 non-redundant transcripts were obtained by the transcriptome analysis. Twenty-nine terpene synthase genes (TPSs) were identified, and phylogenetic analysis showed that they belong to four subfamilies of terpene synthases. Five CaTPSs were successfully cloned. Subcellular localization showed they were present in the nucleus and cytosol. Structure models of five terpene synthases were predicted, and molecular docking results showed good binding affinities with FPP/GPP. In vitro enzymatic tests showed that CaTPS7, CaTPS8, CaTPS10 and CaTPS20 could catalyze substrates to produce terpenoids. CaTPS7 and CaTPS20 were both able to effectively convert the precursor FPP into caryophyllene. CaTPS8 could convert FPP to trans-nerolidol and nerolidyl acetate, while CaTPS10 could convert FPP to elemene and aristolochene. This study lays the groundwork for further research to depict the metabolism network of terpenoid in C. aromaticum. These identical terpene synthase genes could be introduced into the cultivated chrysanthemums to enhance their fragrance.
科研通智能强力驱动
Strongly Powered by AbleSci AI