Integrating Network Pharmacology, Bioinformatics, and Mendelian Randomization Analysis to Identify Hub Targets and Mechanisms of Kunkui Baoshen Decoction in Treating Diabetic Kidney Disease

孟德尔随机化 汤剂 计算生物学 系统药理学 生物 生物信息学 糖尿病 疾病 医学 药理学 传统医学 药品 内分泌学 内科学 基因 生物化学 遗传变异 基因型
作者
Siyuan Song,Jiangyi Yu
出处
期刊:Current Pharmaceutical Design [Bentham Science Publishers]
卷期号:30 (42): 3367-3393 被引量:1
标识
DOI:10.2174/0113816128331463240816145054
摘要

Objective: To uncover the potential hub targets of Kunkui Baoshen Decoction (KKBS) in alleviating Diabetic Kidney Disease (DKD). Methods: Targets associated with KKBS and DKD were curated from TCMSP, GeneCards, OMIM, and Dis- GeNET databases. Common targets were identified through intersection analysis using a Venn diagram. Employing the "Drug-component-target" approach and constructing a Protein-protein Interaction (PPI) network, pivotal components and hub targets involved in KKBS's therapeutic action against DKD were identified. Functional enrichment and Gene Set Enrichment Analysis (GSEA) elucidated the potential mechanisms of these hub targets. Molecular docking simulations validated binding interactions. Subsequently, hub targets were validated using independent cohorts and clinical datasets. Immune cell infiltration in DKD samples was assessed using ESTIMATE, CIBERSORT, and IPS algorithms. A nomogram was developed to predict DKD prevalence. Finally, causal relationships between hub targets and DKD were explored through Mendelian randomization (MR) analysis at the genetic level. Results: Jaranol, isorhamnetin, nobiletin, calycosin, and quercetin emerged as principal effective components in KKBS, with predicted modulation of the PI3K/Akt, MAPK, HIF-1, NF-kB, and IL-17 signaling pathways. The hub targets in the PPI network include proteins involved in regulating podocyte autophagy and apoptosis, managing antioxidant stress, contributing to insulin resistance, and participating in extracellular matrix deposition in DKD. Molecular docking affirmed favorable binding interactions between principal components and hub targets. Validation efforts across cohorts and databases underscored the potential of hub targets as DKD biomarkers. Among 20 model algorithms, the Extra Tree model yielded the largest Area Under the Curve (AUC) in receiver operating characteristic (ROC) analysis. MR analysis elucidated that the targets related to antioxidant stress had a positive impact on DKD, while the target associated with renal tubular basement membrane degradation had a negative impact. Conclusion: Integration of Network Pharmacology, Bioinformatics, and MR analysis unveiled the capacity of KKBS to modulate pivotal targets in the treatment of DKD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ryuki完成签到 ,获得积分10
1秒前
victor完成签到,获得积分20
2秒前
victor发布了新的文献求助10
5秒前
5秒前
老迟到的友容完成签到 ,获得积分20
6秒前
852应助化工渣渣采纳,获得10
6秒前
CR7应助曾建采纳,获得20
7秒前
8秒前
斯文香彤完成签到,获得积分10
8秒前
幸福大白发布了新的文献求助10
8秒前
爆米花应助victor采纳,获得10
10秒前
yx_cheng应助Sophia采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
忍蛙完成签到,获得积分10
11秒前
无所谓发布了新的文献求助10
12秒前
8458完成签到,获得积分20
14秒前
17秒前
高院士完成签到,获得积分10
17秒前
情怀应助8458采纳,获得10
17秒前
化工渣渣发布了新的文献求助10
18秒前
liuker应助fighting采纳,获得20
19秒前
ztt27999完成签到,获得积分10
19秒前
miao发布了新的文献求助10
19秒前
夹心小僧发布了新的文献求助20
21秒前
SYLH应助科研通管家采纳,获得20
22秒前
李爱国应助Q13采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
23秒前
乐乐应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
王子安应助科研通管家采纳,获得50
23秒前
23秒前
科目三应助科研通管家采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993533
求助须知:如何正确求助?哪些是违规求助? 3534281
关于积分的说明 11265112
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809710