Future Implications of Artificial Intelligence in Lung Cancer Screening A Systematic Review

肺癌 癌症 医学 人工智能 计算机科学 肿瘤科 内科学
作者
Juliet Quirk,Conor Mac Donnchadha,Jonathan Vaantaja,Cameron Mitchell,Nicolas Marchi,Jasmine AlSaleh,Bryan Dalton
出处
期刊:BJR|open [British Institute of Radiology]
卷期号:6 (1) 被引量:1
标识
DOI:10.1093/bjro/tzae035
摘要

Abstract Objectives The aim of this study was to systematically review the literature to assess the application of AI-based interventions in lung cancer screening, and its future implications. Methods Relevant published literature was screened using PRISMA guidelines across three databases: PubMed, Scopus, and Web of Science. Search terms for article selection included “artificial intelligence,” “radiology,” “lung cancer,” “screening,” and “diagnostic.” Included studies evaluated the use of AI in lung cancer screening and diagnosis. Results Twelve studies met the inclusion criteria. All studies concerned the role of AI in lung cancer screening and diagnosis. The AIs demonstrated promising ability across four domains: (1) detection, (2) characterization and differentiation, (3) augmentation of the work of human radiologists, (4) AI implementation of the LUNG-RADS framework and its ability to augment this framework. All studies reported positive results, demonstrating in some cases AI’s ability to perform these tasks to a level close to that of human radiologists. Conclusions The AI systems included in this review were found to be effective screening tools for lung cancer. These findings hold important implications for the future use of AI in lung cancer screening programmes as they may see use as an adjunctive tool for lung cancer screening that would aid in making early and accurate diagnosis. Advances in knowledge AI-based systems appear to be powerful tools that can assist radiologists with lung cancer screening and diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123lura完成签到,获得积分10
刚刚
所所应助科研人采纳,获得10
1秒前
Ava应助lily采纳,获得10
1秒前
天涯过客完成签到,获得积分10
1秒前
阿松大发布了新的文献求助10
1秒前
情怀应助张锐斌采纳,获得10
2秒前
2秒前
正直海之完成签到,获得积分10
2秒前
FashionBoy应助c14在读文献采纳,获得10
2秒前
领导范儿应助LXH采纳,获得10
3秒前
totoro完成签到,获得积分10
3秒前
赘婿应助糊涂的砖头采纳,获得10
3秒前
ZMZ完成签到,获得积分10
3秒前
一念之间完成签到,获得积分10
4秒前
影zi发布了新的文献求助10
4秒前
Jaden发布了新的文献求助10
4秒前
伯仲之间发布了新的文献求助10
4秒前
4秒前
斯文败类应助tinatian270采纳,获得10
5秒前
5秒前
5秒前
6秒前
LLL完成签到,获得积分10
6秒前
wxxz完成签到,获得积分10
7秒前
羊六一发布了新的文献求助10
7秒前
桃子完成签到,获得积分10
7秒前
中国大陆完成签到,获得积分10
7秒前
科研小呆瓜完成签到,获得积分10
7秒前
Stella应助周蛋蛋采纳,获得10
7秒前
宋可乐完成签到,获得积分10
7秒前
火星上冰珍完成签到,获得积分10
8秒前
英吉利25发布了新的文献求助10
8秒前
朝阳满意完成签到,获得积分20
8秒前
王鹏斐完成签到,获得积分10
8秒前
不包含特殊字符完成签到,获得积分10
8秒前
8秒前
Dong完成签到,获得积分10
8秒前
qiong253完成签到,获得积分10
8秒前
大狼发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017