Bearing fault diagnosis method based on improved meta-ResNet and sample weighting under noise label

加权 样品(材料) 断层(地质) 噪音(视频) 计算机科学 模式识别(心理学) 方位(导航) 人工智能 统计 数学 声学 地质学 色谱法 化学 地震学 物理 图像(数学)
作者
Suchao Xie,Jiacheng Wang,Yaxin Li,Lingzhi Yang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241277243
摘要

Traditional methods often require the presetting of a weight function based on the dataset to address the issue of noisy labels. However, these methods often encounter challenges related to poor generalization capability. To overcome this obstacle, we propose an improved meta-residual network and sample weighting (SWMeta-IResNet) approach for bearing fault diagnosis. This method leverages singular value decomposition (SVD) matrix decomposition technology to design a global SVD pooling layer. By replacing the max-pooling layer in the original ResNet, this layer effectively reduces the parameter count and enhances the correspondence between feature maps and categories. This method trains the network through alternating input of a small number of unbiased, cleanly labeled samples (meta-samples) and noisy labeled samples. By automatically learning the weight function mapping relationship between the training loss and sample weight from the data, it adaptively learns weights from the meta-samples to improve accuracy. Experimental results on three datasets demonstrate that, even with a noise label rate of 40%, SWMeta-IResNet achieves significant improvements in average accuracy compared to the original ResNet model. Specifically, it enhances the average accuracy by 14.5%, 11.94%, and 6.38%, respectively, yielding accuracy rates of 86.48%, 82.23%, and 94.35%. Moreover, in the bearing failure task with noisy labels, this method exhibits substantial improvements in accuracy and showcases excellent generalization performance across different datasets. As a result, SWMeta-IResNet proves to be highly applicable and effective in addressing the challenges posed by noisy labels in diverse scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慈祥的傲安完成签到,获得积分20
刚刚
1秒前
1秒前
大模型应助土豆采纳,获得10
3秒前
3秒前
彩色石头发布了新的文献求助10
4秒前
joanna发布了新的文献求助10
6秒前
qys发布了新的文献求助10
7秒前
7秒前
OKC发布了新的文献求助10
7秒前
freebird应助慈祥的傲安采纳,获得10
7秒前
DJ发布了新的文献求助10
8秒前
yang完成签到,获得积分10
9秒前
Yugiri完成签到,获得积分10
10秒前
11秒前
XRWei完成签到 ,获得积分10
12秒前
VDC完成签到,获得积分0
12秒前
王王完成签到,获得积分10
13秒前
英姑应助静123采纳,获得10
15秒前
15秒前
16秒前
soooyaaa发布了新的文献求助10
16秒前
16秒前
CipherSage应助Wiz111采纳,获得10
17秒前
joanna完成签到,获得积分10
18秒前
Yan0909完成签到,获得积分10
20秒前
薇MemoryaR发布了新的文献求助10
21秒前
23秒前
风停了完成签到,获得积分10
23秒前
JW完成签到,获得积分10
23秒前
cimu95完成签到 ,获得积分10
25秒前
25秒前
科研通AI6应助Yan0909采纳,获得10
29秒前
李健应助qin采纳,获得10
29秒前
pluto应助Liuyicong采纳,获得10
29秒前
QDE完成签到,获得积分10
30秒前
Asura完成签到,获得积分10
30秒前
OKC完成签到,获得积分10
30秒前
酷波er应助秦可可采纳,获得10
31秒前
gezid完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5328476
求助须知:如何正确求助?哪些是违规求助? 4468224
关于积分的说明 13904317
捐赠科研通 4361093
什么是DOI,文献DOI怎么找? 2395551
邀请新用户注册赠送积分活动 1389090
关于科研通互助平台的介绍 1359861