Bearing fault diagnosis method based on improved meta-ResNet and sample weighting under noise label

加权 样品(材料) 断层(地质) 噪音(视频) 计算机科学 模式识别(心理学) 方位(导航) 人工智能 统计 数学 声学 地质学 色谱法 化学 地震学 物理 图像(数学)
作者
Suchao Xie,Jiacheng Wang,Yaxin Li,Lingzhi Yang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241277243
摘要

Traditional methods often require the presetting of a weight function based on the dataset to address the issue of noisy labels. However, these methods often encounter challenges related to poor generalization capability. To overcome this obstacle, we propose an improved meta-residual network and sample weighting (SWMeta-IResNet) approach for bearing fault diagnosis. This method leverages singular value decomposition (SVD) matrix decomposition technology to design a global SVD pooling layer. By replacing the max-pooling layer in the original ResNet, this layer effectively reduces the parameter count and enhances the correspondence between feature maps and categories. This method trains the network through alternating input of a small number of unbiased, cleanly labeled samples (meta-samples) and noisy labeled samples. By automatically learning the weight function mapping relationship between the training loss and sample weight from the data, it adaptively learns weights from the meta-samples to improve accuracy. Experimental results on three datasets demonstrate that, even with a noise label rate of 40%, SWMeta-IResNet achieves significant improvements in average accuracy compared to the original ResNet model. Specifically, it enhances the average accuracy by 14.5%, 11.94%, and 6.38%, respectively, yielding accuracy rates of 86.48%, 82.23%, and 94.35%. Moreover, in the bearing failure task with noisy labels, this method exhibits substantial improvements in accuracy and showcases excellent generalization performance across different datasets. As a result, SWMeta-IResNet proves to be highly applicable and effective in addressing the challenges posed by noisy labels in diverse scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen272完成签到,获得积分10
3秒前
3秒前
李健应助忆墨浅琳采纳,获得10
4秒前
4秒前
秀丽奎完成签到 ,获得积分10
5秒前
缓慢小蚂蚁完成签到 ,获得积分10
6秒前
Domagin发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
又又完成签到 ,获得积分10
8秒前
9秒前
666完成签到 ,获得积分10
9秒前
老谢医生完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
于瑜与余完成签到 ,获得积分10
12秒前
tsehmu1完成签到 ,获得积分10
12秒前
Jasper应助薛定谔的猫采纳,获得10
13秒前
13秒前
一二三木偶人完成签到,获得积分10
13秒前
幸福大白发布了新的文献求助10
14秒前
15秒前
15秒前
万刈发布了新的文献求助10
15秒前
翎儿响叮当完成签到 ,获得积分10
16秒前
玄学大哥发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
刘佳完成签到 ,获得积分10
18秒前
18秒前
19秒前
无限千山完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
reading gene完成签到,获得积分20
20秒前
小猫咸菜完成签到,获得积分10
20秒前
21秒前
科研通AI5应助赵铁柱采纳,获得10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662487
求助须知:如何正确求助?哪些是违规求助? 3223261
关于积分的说明 9750825
捐赠科研通 2933130
什么是DOI,文献DOI怎么找? 1605938
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743