Bearing fault diagnosis method based on improved meta-ResNet and sample weighting under noise label

加权 样品(材料) 断层(地质) 噪音(视频) 计算机科学 模式识别(心理学) 方位(导航) 人工智能 统计 数学 声学 地质学 色谱法 化学 地震学 物理 图像(数学)
作者
Suchao Xie,Jiacheng Wang,Yaxin Li,Lingzhi Yang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241277243
摘要

Traditional methods often require the presetting of a weight function based on the dataset to address the issue of noisy labels. However, these methods often encounter challenges related to poor generalization capability. To overcome this obstacle, we propose an improved meta-residual network and sample weighting (SWMeta-IResNet) approach for bearing fault diagnosis. This method leverages singular value decomposition (SVD) matrix decomposition technology to design a global SVD pooling layer. By replacing the max-pooling layer in the original ResNet, this layer effectively reduces the parameter count and enhances the correspondence between feature maps and categories. This method trains the network through alternating input of a small number of unbiased, cleanly labeled samples (meta-samples) and noisy labeled samples. By automatically learning the weight function mapping relationship between the training loss and sample weight from the data, it adaptively learns weights from the meta-samples to improve accuracy. Experimental results on three datasets demonstrate that, even with a noise label rate of 40%, SWMeta-IResNet achieves significant improvements in average accuracy compared to the original ResNet model. Specifically, it enhances the average accuracy by 14.5%, 11.94%, and 6.38%, respectively, yielding accuracy rates of 86.48%, 82.23%, and 94.35%. Moreover, in the bearing failure task with noisy labels, this method exhibits substantial improvements in accuracy and showcases excellent generalization performance across different datasets. As a result, SWMeta-IResNet proves to be highly applicable and effective in addressing the challenges posed by noisy labels in diverse scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Philer发布了新的文献求助10
刚刚
JazzWon完成签到,获得积分10
2秒前
喜悦一德完成签到,获得积分10
5秒前
Rondab应助xcc采纳,获得10
7秒前
7秒前
7秒前
John完成签到 ,获得积分10
9秒前
9秒前
11秒前
11秒前
叶叶发布了新的文献求助10
12秒前
13秒前
wxq完成签到,获得积分10
13秒前
糊涂一时完成签到 ,获得积分10
15秒前
刘鹏程完成签到,获得积分10
16秒前
Lin完成签到 ,获得积分10
17秒前
在水一方应助噜噜晓采纳,获得10
17秒前
AlwaysKim发布了新的文献求助10
18秒前
完美世界应助坚强白凝采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
19秒前
热切菩萨应助科研通管家采纳,获得50
19秒前
热切菩萨应助科研通管家采纳,获得10
19秒前
19秒前
orixero应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
mwh完成签到 ,获得积分10
21秒前
二月完成签到,获得积分10
23秒前
yys完成签到,获得积分10
26秒前
怡然凌柏完成签到 ,获得积分10
26秒前
坚强白凝完成签到,获得积分10
26秒前
炙热的念柏应助子苇采纳,获得10
27秒前
28秒前
18726352502完成签到,获得积分10
29秒前
沉淀完成签到 ,获得积分20
29秒前
叶叶完成签到,获得积分20
31秒前
yys10l完成签到,获得积分10
31秒前
暮然发布了新的文献求助10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382