Bearing fault diagnosis method based on improved meta-ResNet and sample weighting under noise label

加权 样品(材料) 断层(地质) 噪音(视频) 计算机科学 模式识别(心理学) 方位(导航) 人工智能 统计 数学 声学 地质学 色谱法 化学 地震学 物理 图像(数学)
作者
Suchao Xie,Jiacheng Wang,Yaxin Li,Lingzhi Yang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241277243
摘要

Traditional methods often require the presetting of a weight function based on the dataset to address the issue of noisy labels. However, these methods often encounter challenges related to poor generalization capability. To overcome this obstacle, we propose an improved meta-residual network and sample weighting (SWMeta-IResNet) approach for bearing fault diagnosis. This method leverages singular value decomposition (SVD) matrix decomposition technology to design a global SVD pooling layer. By replacing the max-pooling layer in the original ResNet, this layer effectively reduces the parameter count and enhances the correspondence between feature maps and categories. This method trains the network through alternating input of a small number of unbiased, cleanly labeled samples (meta-samples) and noisy labeled samples. By automatically learning the weight function mapping relationship between the training loss and sample weight from the data, it adaptively learns weights from the meta-samples to improve accuracy. Experimental results on three datasets demonstrate that, even with a noise label rate of 40%, SWMeta-IResNet achieves significant improvements in average accuracy compared to the original ResNet model. Specifically, it enhances the average accuracy by 14.5%, 11.94%, and 6.38%, respectively, yielding accuracy rates of 86.48%, 82.23%, and 94.35%. Moreover, in the bearing failure task with noisy labels, this method exhibits substantial improvements in accuracy and showcases excellent generalization performance across different datasets. As a result, SWMeta-IResNet proves to be highly applicable and effective in addressing the challenges posed by noisy labels in diverse scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sci_zt发布了新的文献求助10
刚刚
科目三应助xia采纳,获得80
1秒前
1秒前
1秒前
2秒前
研友_LXOJq8发布了新的文献求助10
2秒前
wanci应助hazardatom采纳,获得10
3秒前
hellotop2完成签到,获得积分10
3秒前
蛋宝完成签到,获得积分10
5秒前
chiron完成签到,获得积分10
5秒前
evefei发布了新的文献求助30
5秒前
科研通AI2S应助ShengzhangLiu采纳,获得10
5秒前
6秒前
6秒前
morris发布了新的文献求助10
6秒前
6秒前
指纹抒写年轮完成签到,获得积分10
6秒前
锅包肉完成签到 ,获得积分10
6秒前
7秒前
7秒前
heheda发布了新的文献求助10
7秒前
FashionBoy应助全球一亿基佬采纳,获得10
7秒前
鱼儿123完成签到,获得积分10
8秒前
8秒前
玄叶完成签到,获得积分10
9秒前
YJ完成签到,获得积分10
9秒前
10秒前
Linda完成签到,获得积分10
10秒前
衫楠如画完成签到 ,获得积分10
10秒前
10秒前
蟹黄小笼包完成签到,获得积分10
10秒前
小橙同学发布了新的文献求助30
11秒前
onethree完成签到 ,获得积分10
11秒前
葡萄发布了新的文献求助10
11秒前
yoga完成签到 ,获得积分10
12秒前
糖果发布了新的文献求助10
12秒前
水煮蛋发布了新的文献求助10
12秒前
12秒前
爱笑灵竹发布了新的文献求助10
12秒前
饭桶而已啊完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3069006
求助须知:如何正确求助?哪些是违规求助? 2722831
关于积分的说明 7479538
捐赠科研通 2369753
什么是DOI,文献DOI怎么找? 1256697
科研通“疑难数据库(出版商)”最低求助积分说明 609645
版权声明 596839