Deep Learning-Based Analysis of Emotional and Content Relevance Between Bullet Screens and Subtitles as Movie Narrative Medium

叙述的 相关性(法律) 内容(测量理论) 内容分析 心理学 认知心理学 社会学 文学类 艺术 政治学 社会科学 数学 数学分析 法学
作者
Wang Hanmei
出处
期刊:SAGE Open [SAGE]
卷期号:14 (3)
标识
DOI:10.1177/21582440241280840
摘要

This study borrows elements of film text in the field of film studies to develop the potential of data analysis using AI algorithms, while aiming to explore the emotional and content relevances between the two narrative mediums in film, bullet screens and subtitles, as well as the narrative effect variations that they bring about. The film sample Forever Young was analyzed by deep learning, data analysis, and knowledge discovery algorithms and tools. The BERT model was used to quantify the intensity of emotions and conduct fine-grained emotional classification of film characters. Emotion curves are plotted based on time series data. Thematic words are extracted by the LDA algorithm, and text similarity is computed using Word2Vec. The study found differences in emotional expression between bullet screens and subtitles, and they also exhibit strong emotional and content relevances. Yet, this correlation is not only influenced by temporal deviation factors but also by specific emotional types, different stages of story development, and the collective emotions of online views. The conclusion suggests that the effective collection of plot metronomes in film narratives helps reveal crucial plot nodes and emotional trends in films that cause obvious emotional changes, and placing them appropriately is fundamental for continuously attracting and retaining viewers’ attention. The interaction between bullet comments and subtitles is not only about emotional expression but also enhances the effectiveness of the film narrative. Overall, this study demonstrates the importance of database logic and technology in understanding and expressing film emotions and meanings, and providing new ideas and methods for enhancing film narrative effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李子涵发布了新的文献求助10
3秒前
杪春完成签到 ,获得积分10
5秒前
天真的傲丝完成签到,获得积分10
7秒前
半芹完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助句号采纳,获得10
10秒前
英俊的铭应助悦耳的盼芙采纳,获得10
12秒前
anna1992发布了新的文献求助10
15秒前
典雅葶完成签到 ,获得积分10
17秒前
中恐完成签到,获得积分10
18秒前
JamesPei应助seven采纳,获得10
18秒前
领导范儿应助喵喵大王采纳,获得10
19秒前
20秒前
Siri发布了新的文献求助10
21秒前
21秒前
神器完成签到,获得积分10
23秒前
23秒前
勤奋曼雁发布了新的文献求助10
24秒前
自然完成签到,获得积分10
26秒前
科研通AI2S应助去看海嘛采纳,获得10
26秒前
Echo关注了科研通微信公众号
27秒前
29秒前
30秒前
斯文败类应助自然采纳,获得10
31秒前
31秒前
32秒前
33秒前
34秒前
Liu发布了新的文献求助10
34秒前
喜悦静枫发布了新的文献求助10
35秒前
国家栋梁发布了新的文献求助30
37秒前
852应助苹果衬衫采纳,获得10
37秒前
sx完成签到,获得积分10
37秒前
luckyru发布了新的文献求助10
38秒前
www完成签到,获得积分10
38秒前
38秒前
修仙应助小学霸搞科研采纳,获得10
39秒前
Liu完成签到,获得积分20
40秒前
灰灰应助hyx采纳,获得10
41秒前
42秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260162
求助须知:如何正确求助?哪些是违规求助? 2901425
关于积分的说明 8315627
捐赠科研通 2570994
什么是DOI,文献DOI怎么找? 1396784
科研通“疑难数据库(出版商)”最低求助积分说明 653580
邀请新用户注册赠送积分活动 631990