已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning-Based Analysis of Emotional and Content Relevance Between Bullet Screens and Subtitles as Movie Narrative Medium

叙述的 相关性(法律) 内容(测量理论) 内容分析 心理学 认知心理学 社会学 文学类 艺术 政治学 社会科学 数学分析 数学 法学
作者
Wang Hanmei
出处
期刊:SAGE Open [SAGE Publishing]
卷期号:14 (3)
标识
DOI:10.1177/21582440241280840
摘要

This study borrows elements of film text in the field of film studies to develop the potential of data analysis using AI algorithms, while aiming to explore the emotional and content relevances between the two narrative mediums in film, bullet screens and subtitles, as well as the narrative effect variations that they bring about. The film sample Forever Young was analyzed by deep learning, data analysis, and knowledge discovery algorithms and tools. The BERT model was used to quantify the intensity of emotions and conduct fine-grained emotional classification of film characters. Emotion curves are plotted based on time series data. Thematic words are extracted by the LDA algorithm, and text similarity is computed using Word2Vec. The study found differences in emotional expression between bullet screens and subtitles, and they also exhibit strong emotional and content relevances. Yet, this correlation is not only influenced by temporal deviation factors but also by specific emotional types, different stages of story development, and the collective emotions of online views. The conclusion suggests that the effective collection of plot metronomes in film narratives helps reveal crucial plot nodes and emotional trends in films that cause obvious emotional changes, and placing them appropriately is fundamental for continuously attracting and retaining viewers’ attention. The interaction between bullet comments and subtitles is not only about emotional expression but also enhances the effectiveness of the film narrative. Overall, this study demonstrates the importance of database logic and technology in understanding and expressing film emotions and meanings, and providing new ideas and methods for enhancing film narrative effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
性温雅完成签到 ,获得积分10
14秒前
鳗鱼行天发布了新的文献求助30
17秒前
18秒前
木木彡发布了新的文献求助10
23秒前
能干的山雁完成签到 ,获得积分10
24秒前
25秒前
3080完成签到 ,获得积分10
25秒前
l98916发布了新的文献求助10
30秒前
aniywn完成签到 ,获得积分10
35秒前
鳗鱼行天完成签到,获得积分10
35秒前
科研通AI5应助Ni采纳,获得10
38秒前
39秒前
39秒前
44秒前
RUSeries发布了新的文献求助10
45秒前
47秒前
ding应助meng采纳,获得10
52秒前
Ni发布了新的文献求助10
52秒前
fengliurencai完成签到,获得积分10
54秒前
姜忆霜完成签到 ,获得积分10
55秒前
优秀的学习崽完成签到,获得积分10
56秒前
1分钟前
miaomiaomiao发布了新的文献求助10
1分钟前
sam发布了新的文献求助200
1分钟前
Nakacoke77完成签到,获得积分10
1分钟前
Murphy完成签到 ,获得积分10
1分钟前
顾矜应助冷傲的灯泡采纳,获得10
1分钟前
包容东蒽完成签到 ,获得积分10
1分钟前
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
morena应助科研通管家采纳,获得10
1分钟前
Xiaoxiao应助科研通管家采纳,获得30
1分钟前
今后应助VDC采纳,获得10
1分钟前
横A完成签到 ,获得积分10
1分钟前
1分钟前
无私的枕头完成签到,获得积分10
1分钟前
ling361完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671180
求助须知:如何正确求助?哪些是违规求助? 3228098
关于积分的说明 9778330
捐赠科研通 2938347
什么是DOI,文献DOI怎么找? 1609853
邀请新用户注册赠送积分活动 760473
科研通“疑难数据库(出版商)”最低求助积分说明 735976