f-PICNN: A physics-informed convolutional neural network for partial differential equations with space-time domain

偏微分方程 离散化 人工神经网络 非线性系统 维数之咒 卷积神经网络 反问题 应用数学 计算机科学 趋同(经济学) 数学 人工智能 数学分析 物理 量子力学 经济增长 经济
作者
Biao Yuan,He Wang,Ana Heitor,Xiaohui Chen
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:515: 113284-113284 被引量:4
标识
DOI:10.1016/j.jcp.2024.113284
摘要

The physics and interdisciplinary problems in science and engineering are mainly described as partial differential equations (PDEs). Recently, a novel method using physics-informed neural networks (PINNs) to solve PDEs by employing deep neural networks with physical constraints as data-driven models has been pioneered for surrogate modelling and inverse problems. However, the original PINNs based on fully connected neural networks pose intrinsic limitations and poor performance for the PDEs with nonlinearity, drastic gradients, multiscale characteristics or high dimensionality in which the complex features are hard to capture. This leads to difficulties in convergence to correct solutions and high computational costs. To address the above problems, in this paper, a novel physics-informed convolutional neural network framework based on finite discretization schemes with a stack of a series of nonlinear convolutional units (NCUs) for solving PDEs in the space-time domain without any labelled data (f-PICNN) is proposed, in which the memory mechanism can considerably speed up the convergence. Specifically, the initial conditions (ICs) are hard-encoded into the network as the first time-step solution and used to extrapolate the next time-step solution. The Dirichlet boundary conditions (BCs) are constrained by soft BC enforcement while the Neumann BCs are hard enforced. Furthermore, the loss function is designed as a set of discretized PDE residuals and optimized to conform to physics laws. Finally, the proposed auto-regressive model has been proven to be effective in a wide range of 1D and 2D nonlinear PDEs in both space and time under different finite discretization schemes (e.g., Euler, Crank Nicolson and fourth-order Runge-Kutta). The numerical results demonstrate that the proposed framework not only shows the ability to learn the PDEs efficiently but also provides an opportunity for greater conceptual simplicity, and potential for extrapolation from learning the PDEs using a limited dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
乐乐乐发布了新的文献求助10
刚刚
刚刚
1秒前
洪旺旺完成签到 ,获得积分10
1秒前
小兵完成签到,获得积分10
1秒前
qyh完成签到,获得积分10
2秒前
斯文败类应助blingl采纳,获得50
2秒前
2秒前
careS发布了新的文献求助10
3秒前
英姑应助usee采纳,获得10
3秒前
英俊的铭应助123采纳,获得10
3秒前
liubo发布了新的文献求助10
3秒前
害怕的问儿完成签到,获得积分10
3秒前
4秒前
111完成签到,获得积分10
5秒前
圆锥香蕉应助牛姐采纳,获得20
5秒前
无花果应助落后的沛柔采纳,获得10
5秒前
你可真行完成签到,获得积分10
6秒前
qyh发布了新的文献求助10
6秒前
6秒前
彩色的芷烟完成签到,获得积分10
6秒前
7秒前
8秒前
orixero应助明明采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
xliiii发布了新的文献求助10
8秒前
wahaha完成签到,获得积分10
9秒前
SOO应助boshi采纳,获得10
9秒前
开心的伟宸关注了科研通微信公众号
10秒前
莫莫莫莫几完成签到,获得积分10
10秒前
llj发布了新的文献求助10
10秒前
10秒前
JamesPei应助Clown采纳,获得10
10秒前
ding应助qyh采纳,获得10
10秒前
careS完成签到,获得积分10
10秒前
迷路向松完成签到,获得积分10
11秒前
11秒前
CodeCraft应助支凤妖采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650